response surface technique
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Zhang ◽  
Yang Yang ◽  
Zhanyong Wang

Response surface technique was employed for improving the extraction of corn silk polysaccharides (CSP). Temperature, liquid-to-solid ratio, and per extraction time were all examined as separate factors. The optimal extraction parameters were determined by fitting experimental data to a second-order polynomial; a liquid-to-solid ratio of 21.5 ml/g, temperature equivalent to 88°C, and extraction time of 1.87 h. The experimental yield of the extracted polysaccharides following the application of these conditions was 4.33 ± 0.08% (dry weight), which fit quite well with the predicted value. CSP’s strong scavenging capabilities against hydroxyls, 1,1-diphenyl-2-picrylhydrazyl radicals, and superoxide anions along with its excellent reducing potential, were demonstrated in an in vitro antioxidant experiment. Meanwhile, in vivo testing revealed that CSP substantially enhanced glutathione peroxidase and superoxide dismutase activities. The Malondialdehyde levels in the liver and serum of aged mice also underwent a decrease. This study found that CSP has a substantial antioxidant potential in vitro and in vivo, suggesting that it might be used as an antioxidant in food and medicine.


2021 ◽  
Vol 45 (4) ◽  
pp. 273-280
Author(s):  
Raju Kalakuntala ◽  
Srinath Surnani

The performance of heteropoly acid i.e., Tungstan phosphoric acid for the synthesis of butyl propionate at optimized conditions. Effect on conversion and yield of propionic acids using the Response Surface Methodology (RSM) were evaluated by different process parameters including catalyst loading, alcohol/acid molar ratio. There were no external and internal mass transmission limits. A quadratic model acquired by the variance study (ANOVA) has been shown to view experimental data successfully with the regression (R2 = 0.94 and R2 = 0.942) coefficients approaching to unity. The pseudo homogeneous kinetic model (PH) validated with experimental data to determine kinetic parameters i.e., activation energy (45.97 kJ/mol) and frequent factor (91319 L/mol-min).


2021 ◽  
Vol 320 ◽  
pp. 161-165
Author(s):  
Endija Namsone ◽  
Alexandr Arshanitsa

For an effectiveness improvement of conventional pultrusion processes, new optimization methodology is developed by using the design of experiments and response surface technique. An application of this methodology with two objective functions describing the minimum electrical energy spent for a curing and maximum pull speed is successfully demonstrated for the pultrusion process producing thin-walled-rectangular profile.


2021 ◽  
Vol 19 (4) ◽  
pp. 330-336
Author(s):  
Apiradee Sukmilin ◽  
◽  
Ratsamee Sangsirimongkolying ◽  

This research studied the possibility of using ozone to remove iron from groundwater. The optimum conditions were investigated using a Box-Behnken experiment design with statistical analysis by response surface technique. The three parameters investigated, pH (6.0-8.0), hardness (300-500 mg/L as CaCO3) and removal time (10 to 60 min) were independent parameters of iron removal. Data was examined for optimal conditions and included main effects and their interactions. Analysis of variance indicated that the proposed quadratic model successfully interpreted the experimental data with a coefficient of determination (R2) of 98.83% and adjusted R2 of 96.72%. Through this model, it could predict the iron removal efficiency under variable conditions. Furthermore, the optimum conditions were pH 6.99, hardness of 300 mg/L as CaCO3, and 10 min of reaction time. The predicted iron removal efficiency obtained from the model under the optimum conditions was 99.00%. The experiment confirmed that the optimum condition which validated the model’s accuracy of iron removal efficiency was 98.45%. The results showed that ozone can remove iron from groundwater.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4899
Author(s):  
Riccardo Orso ◽  
Ernesto Benini ◽  
Moreno Minozzo ◽  
Riccardo Bergamin ◽  
Andrea Magrini

The overall cost of a hydropower plant is mainly due to the expenses of civil works, mechanical equipment (turbine and control units) and electrical components. The goal of a new draft tube design is to obtain a geometry that reduces investment costs, especially the excavation ones, but the primary driver is to increase overall machine efficiency, allowing for a reduced payback time. In the present study, an optimization study of the elbow-draft tube assembly of a Kaplan turbine was conducted. First, a CFD model for the complete turbine was developed and validated. Next, an optimization of the draft tube alone was performed using a design of experiments technique. Finally, several optimum solutions for the draft tube were obtained using a response surface technique aiming at maximizing pressure recovery and minimizing flow losses. A selection of optimized geometries was subsequently post-checked using the validated model of the entire turbine, and a detailed flow analysis on the obtained results made it possible to provide insights into the improved designs. It was observed that efficiency could be improved by 1% (in relative terms), and the mechanical power increased by 1.8% (in relative terms) with respect to the baseline turbine.


Author(s):  
Riccardo Orso ◽  
Ernesto Benini ◽  
Moreno Minozzo ◽  
Riccardo Bergamin

The overall cost of a hydropower plant is mainly due to the expenses for civil works, mechanical equipment (turbine and control units) and electrical components. The goal of a new draft tube design is to obtain a geometry that reduces investment costs, especially the excavation ones, but the primary driver is to increase the overall machine efficiency allowing for reduced payback time. In the present study, an optimization study of the elbow-draft tube assembly of a Kaplan turbine was conducted. A CFD model for the complete turbine has been developed and validated; next, an optimization of the draft tube alone was performed using a Design of Experiments technique; finally, several optimum solutions for the draft tube were obtained using a Response Surface technique aiming at maximizing pressure recovery and minimizing flow losses. A selection of optimized geometries was subsequently post-checked using the validated model of the entire turbine and a detailed flow analysis on the obtained results could make it possible to provide insight into the improved designs. It was observed that efficiency could be improved by 1% (in relative terms), and the mechanical power increased by 1,8% (in relative terms) with respect to the baseline turbine.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3416
Author(s):  
Zheng Wei Chin ◽  
Kavithraashree Arumugam ◽  
Siti Efliza Ashari ◽  
Fadzlie Wong Faizal Wong ◽  
Joo Shun Tan ◽  
...  

The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett–Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box–Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.


Author(s):  
Ivan Silva ◽  
Marcelo Colaco

This paper proposes the use of non-uniform extended surfaces installed externally to the tubes of the radiation section of fired heaters, in order to obtain a better heat flux distribution to the coils. To this end, the heat transfer mechanisms present in such equipment were studied through computational fluid dynamics (CFD), using simplified geometries that represent typical sizes of fired heaters. Also, a simplified model for the combustion was considered. Although this model oversimplifies the physics of the problem, it was able to give satisfactory results for the parameters being optimized, considering the main objective of this paper, that is to minimize the non-uniformity of heat flux in the tubes of the radiant section of fired heaters. It was possible to obtain optimized geometric parameters for different types of extended surfaces evaluated, coupling the results of these models with the Particle Swarm optimization method through the use of a response surface technique,. The results indicate a significant improvement in the uniformity of the heat flux distribution to the tubes through the use of the proposed extended surfaces. Thus, this solution reveals to be an interesting alternative to reduce the risks of fluid degradation and coking formation. Future studies must investigate the non-uniformity of the heat flux due to the presence of the flame and consider the interaction between the reactive flow and the participating medium. Nevertheless, this paper presents some results that justify the optimization of such extended surfaces taking into consideration thermal radiation.


Sign in / Sign up

Export Citation Format

Share Document