Performance Comparison of Energy-Aware Task Scheduling with GA and CRO Algorithms in Cloud Environment

2014 ◽  
Vol 596 ◽  
pp. 204-208 ◽  
Author(s):  
Lin Wu ◽  
Yu Jing Wang ◽  
Chao Kun Yan

With energy problem of cloud data center is becoming more and more serious, the BoT scheduling algorithm only considering the timespan is not applicable to the cloud computing environment. In order to explore the energy-aware task scheduling algorithm performance, this paper validates simulation experiments with GA algorithms and CRO algorithms, to optimize the makespan as the main objective, to optimize energy consumption indicators for the secondary objective. Experiments show that, GA algorithms and CRO algorithm can be applied to different scenarios, while optimizing makespan, but also to some extent reduce the total energy consumption of the system can be used as task scheduling strategy cloud environments.Keyword: Cloud Computing, Task Scheduling, Energy-awareness, CRO algorithm, GA algorithm

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Weiwei Lin ◽  
Wentai Wu ◽  
James Z. Wang

Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual machine power efficiency-aware greedy scheduling algorithm (VPEGS). As a heuristic algorithm, VPEGS estimates task energy by considering factors including task resource demands, VM power efficiency, and server workload before scheduling tasks in a greedy manner. We simulated a heterogeneous VM cluster and conducted experiment to evaluate the effectiveness of VPEGS. Simulation results show that VPEGS effectively reduced total energy consumption by more than 20% without producing large scheduling overheads. With the similar heuristic ideology, it outperformed Min-Min and RASA with respect to energy saving by about 29% and 28%, respectively.


2013 ◽  
Vol 325-326 ◽  
pp. 1730-1733 ◽  
Author(s):  
Si Yuan Jing ◽  
Shahzad Ali ◽  
Kun She

Numerous part of the energy-aware resource provision research for cloud data center just considers how to maximize the resource utilization, i.e. minimize the required servers, without considering the overhead of a virtual machine (abbreviated as a VM) placement change. In this work, we propose a new method to minimize the energy consumption and VM placement change at the same time, moreover we also design a network-flow-theory based approximate algorithm to solve it. The simulation results show that, compared to existing work, the proposed method can slightly decrease the energy consumption but greatly decrease the number of VM placement change


2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

Fog computing and Edge computing are few of the latest technologies which are offered as solution to challenges faced in Cloud Computing. Instead of offloading of all the tasks to centralized cloud servers, some of the tasks can be scheduled at intermediate Fog servers or Edge devices. Though this solves most of the problems faced in cloud but also encounter other traditional problems due to resource-related constraints like load balancing, scheduling, etc. In order to address task scheduling and load balancing in Cloud-fog-edge collaboration among servers, we have proposed an improved version of min-min algorithm for workflow scheduling which considers cost, makespan, energy and load balancing in heterogeneous environment. This algorithm is implemented and tested in different offloading scenarios- Cloud only, Fog only, Cloud-fog and Cloud-Fog-Edge collaboration. This approach performed better and the result gives minimum makespan, less energy consumption along with load balancing and marginally less cost when compared to min-min and ELBMM algorithms


2021 ◽  
Vol 17 (3) ◽  
pp. 155014772199721
Author(s):  
Mueen Uddin ◽  
Mohammed Hamdi ◽  
Abdullah Alghamdi ◽  
Mesfer Alrizq ◽  
Mohammad Sulleman Memon ◽  
...  

Cloud computing is a well-known technology that provides flexible, efficient, and cost-effective information technology solutions for multinationals to offer improved and enhanced quality of business services to end-users. The cloud computing paradigm is instigated from grid and parallel computing models as it uses virtualization, server consolidation, utility computing, and other computing technologies and models for providing better information technology solutions for large-scale computational data centers. The recent intensifying computational demands from multinationals enterprises have motivated the magnification for large complicated cloud data centers to handle business, monetary, Internet, and commercial applications of different enterprises. A cloud data center encompasses thousands of millions of physical server machines arranged in racks along with network, storage, and other equipment that entails an extensive amount of power to process different processes and amenities required by business firms to run their business applications. This data center infrastructure leads to different challenges like enormous power consumption, underutilization of installed equipment especially physical server machines, CO2 emission causing global warming, and so on. In this article, we highlight the data center issues in the context of Pakistan where the data center industry is facing huge power deficits and shortcomings to fulfill the power demands to provide data and operational services to business enterprises. The research investigates these challenges and provides solutions to reduce the number of installed physical server machines and their related device equipment. In this article, we proposed server consolidation technique to increase the utilization of already existing server machines and their workloads by migrating them to virtual server machines to implement green energy-efficient cloud data centers. To achieve this objective, we also introduced a novel Virtualized Task Scheduling Algorithm to manage and properly distribute the physical server machine workloads onto virtual server machines. The results are generated from a case study performed in Pakistan where the proposed server consolidation technique and virtualized task scheduling algorithm are applied on a tier-level data center. The results obtained from the case study demonstrate that there are annual power savings of 23,600 W and overall cost savings of US$78,362. The results also highlight that the utilization ratio of already existing physical server machines has increased to 30% compared to 10%, whereas the number of server machines has reduced to 50% contributing enormously toward huge power savings.


Author(s):  
Li Mao ◽  
De Yu Qi ◽  
Wei Wei Lin ◽  
Bo Liu ◽  
Ye Da Li

With the rapid growth of energy consumption in global data centers and IT systems, energy optimization has become an important issue to be solved in cloud data center. By introducing heterogeneous energy constraints of heterogeneous physical servers in cloud computing, an energy-efficient resource scheduling model for heterogeneous physical servers based on constraint satisfaction problems is presented. The method of model solving based on resource equivalence optimization is proposed, in which the resources in the same class are pruning treatment when allocating resource so as to reduce the solution space of the resource allocation model and speed up the model solution. Experimental results show that, compared with DynamicPower and MinPM, the proposed algorithm (EqPower) not only improves the performance of resource allocation, but also reduces energy consumption of cloud data center.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chunxia Yin ◽  
Jian Liu ◽  
Shunfu Jin

In recent years, the energy consumption of cloud data centers has continued to increase. A large number of servers run at a low utilization rate, which results in a great waste of power. To save more energy in a cloud data center, we propose an energy-efficient task-scheduling mechanism with switching on/sleep mode of servers in the virtualized cloud data center. The key idea is that when the number of idle VMs reaches a specified threshold, the server with the most idle VMs will be switched to sleep mode after migrating all the running tasks to other servers. From the perspective of the total number of tasks and the number of servers in sleep mode in the system, we establish a two-dimensional Markov chain to analyse the proposed energy-efficient mechanism. By using the method of the matrix-geometric solution, we mathematically estimate the energy consumption and the response performance. Both numerical and simulated experiments show that our proposed energy-efficient mechanism can effectively reduce the energy consumption and guarantee the response performance. Finally, by constructing a cost function, the number of VMs hosted on each server is optimized.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1514
Author(s):  
Aroosa Mubeen ◽  
Muhammad Ibrahim ◽  
Nargis Bibi ◽  
Mohammad Baz ◽  
Habib Hamam ◽  
...  

According to the research, many task scheduling approaches have been proposed like GA, ACO, etc., which have improved the performance of the cloud data centers concerning various scheduling parameters. The task scheduling problem is NP-hard, as the key reason is the number of solutions/combinations grows exponentially with the problem size, e.g., the number of tasks and the number of computing resources. Thus, it is always challenging to have complete optimal scheduling of the user tasks. In this research, we proposed an adaptive load-balanced task scheduling (ALTS) approach for cloud computing. The proposed task scheduling algorithm maps all incoming tasks to the available VMs in a load-balanced way to reduce the makespan, maximize resource utilization, and adaptively minimize the SLA violation. The performance of the proposed task scheduling algorithm is evaluated and compared with the state-of-the-art task scheduling ACO, GA, and GAACO approaches concerning average resource utilization (ARUR), Makespan, and SLA violation. The proposed approach has revealed significant improvements concerning the makespan, SLA violation, and resource utilization against the compared approaches.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-24
Author(s):  
Kuljeet Kaur ◽  
Sahil Garg ◽  
Georges Kaddoum ◽  
Neeraj Kumar

Energy consumption minimization of cloud data centers (DCs) has attracted much attention from the research community in the recent years; particularly due to the increasing dependence of emerging Cyber-Physical Systems on them. An effective way to improve the energy efficiency of DCs is by using efficient job scheduling strategies. However, the most challenging issue in selection of efficient job scheduling strategy is to ensure service-level agreement (SLA) bindings of the scheduled tasks. Hence, an energy-aware and SLA-driven job scheduling framework based on MapReduce is presented in this article. The primary aim of the proposed framework is to explore task-to-slot/container mapping problem as a special case of energy-aware scheduling in deadline-constrained scenario. Thus, this problem can be viewed as a complex multi-objective problem comprised of different constraints. To address this problem efficiently, it is segregated into three major subproblems (SPs), namely, deadline segregation, map and reduce phase energy-aware scheduling. These SPs are individually formulated using Integer Linear Programming. To solve these SPs effectively, heuristics based on Greedy strategy along with classical Hungarian algorithm for serial and serial-parallel systems are used. Moreover, the proposed scheme also explores the potential of splitting Map/Reduce phase(s) into multiple stages to achieve higher energy reductions. This is achieved by leveraging the concepts of classical Greedy approach and priority queues. The proposed scheme has been validated using real-time data traces acquired from OpenCloud. Moreover, the performance of the proposed scheme is compared with the existing schemes using different evaluation metrics, namely, number of stages, total energy consumption, total makespan, and SLA violated. The results obtained prove the efficacy of the proposed scheme in comparison to the other schemes under different workload scenarios.


2020 ◽  
Vol 1 (3) ◽  
pp. 98-105 ◽  
Author(s):  
Hanan Shukur ◽  
Subhi Zeebaree ◽  
Rizgar Zebari ◽  
Diyar Zeebaree ◽  
Omar Ahmed ◽  
...  

Cloud computing is a new technology which managed by a third party “cloud provider” to provide the clients with services anywhere, at any time, and under various circumstances. In order to provide clients with cloud resources and satisfy their needs, cloud computing employs virtualization and resource provisioning techniques.  The process of providing clients with shared virtualized resources (hardware, software, and platform) is a big challenge for the cloud provider because of over-provision and under-provision problems. Therefore, this paper highlighted some proposed approaches and scheduling algorithms applied for resource allocation within cloud computing through virtualization in the datacenter. The paper also aims to explore the role of virtualization in providing resources effectively based on clients’ requirements. The results of these approaches showed that each proposed approach and scheduling algorithm has an obvious role in utilizing the shared resources of the cloud data center. The paper also explored that virtualization technique has a significant impact on enhancing the network performance, save the cost by reducing the number of Physical Machines (PM) in the datacenter, balance the load, conserve the server’s energy, and allocate resources actively thus satisfying the clients’ requirements. Based on our review, the availability of Virtual Machine (VM) resource and execution time of requests are the key factors to be considered in any optimal resource allocation algorithm. As a results of our analyzing for the proposed approaches is that the requests execution time and VM availability are main issues and should in consideration in any allocating resource approach.


Sign in / Sign up

Export Citation Format

Share Document