Energy and SLA-driven MapReduce Job Scheduling Framework for Cloud-based Cyber-Physical Systems

2021 ◽  
Vol 21 (2) ◽  
pp. 1-24
Author(s):  
Kuljeet Kaur ◽  
Sahil Garg ◽  
Georges Kaddoum ◽  
Neeraj Kumar

Energy consumption minimization of cloud data centers (DCs) has attracted much attention from the research community in the recent years; particularly due to the increasing dependence of emerging Cyber-Physical Systems on them. An effective way to improve the energy efficiency of DCs is by using efficient job scheduling strategies. However, the most challenging issue in selection of efficient job scheduling strategy is to ensure service-level agreement (SLA) bindings of the scheduled tasks. Hence, an energy-aware and SLA-driven job scheduling framework based on MapReduce is presented in this article. The primary aim of the proposed framework is to explore task-to-slot/container mapping problem as a special case of energy-aware scheduling in deadline-constrained scenario. Thus, this problem can be viewed as a complex multi-objective problem comprised of different constraints. To address this problem efficiently, it is segregated into three major subproblems (SPs), namely, deadline segregation, map and reduce phase energy-aware scheduling. These SPs are individually formulated using Integer Linear Programming. To solve these SPs effectively, heuristics based on Greedy strategy along with classical Hungarian algorithm for serial and serial-parallel systems are used. Moreover, the proposed scheme also explores the potential of splitting Map/Reduce phase(s) into multiple stages to achieve higher energy reductions. This is achieved by leveraging the concepts of classical Greedy approach and priority queues. The proposed scheme has been validated using real-time data traces acquired from OpenCloud. Moreover, the performance of the proposed scheme is compared with the existing schemes using different evaluation metrics, namely, number of stages, total energy consumption, total makespan, and SLA violated. The results obtained prove the efficacy of the proposed scheme in comparison to the other schemes under different workload scenarios.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Weiwei Lin ◽  
Wentai Wu ◽  
James Z. Wang

Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual machine power efficiency-aware greedy scheduling algorithm (VPEGS). As a heuristic algorithm, VPEGS estimates task energy by considering factors including task resource demands, VM power efficiency, and server workload before scheduling tasks in a greedy manner. We simulated a heterogeneous VM cluster and conducted experiment to evaluate the effectiveness of VPEGS. Simulation results show that VPEGS effectively reduced total energy consumption by more than 20% without producing large scheduling overheads. With the similar heuristic ideology, it outperformed Min-Min and RASA with respect to energy saving by about 29% and 28%, respectively.


2014 ◽  
Vol 596 ◽  
pp. 204-208 ◽  
Author(s):  
Lin Wu ◽  
Yu Jing Wang ◽  
Chao Kun Yan

With energy problem of cloud data center is becoming more and more serious, the BoT scheduling algorithm only considering the timespan is not applicable to the cloud computing environment. In order to explore the energy-aware task scheduling algorithm performance, this paper validates simulation experiments with GA algorithms and CRO algorithms, to optimize the makespan as the main objective, to optimize energy consumption indicators for the secondary objective. Experiments show that, GA algorithms and CRO algorithm can be applied to different scenarios, while optimizing makespan, but also to some extent reduce the total energy consumption of the system can be used as task scheduling strategy cloud environments.Keyword: Cloud Computing, Task Scheduling, Energy-awareness, CRO algorithm, GA algorithm


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 554
Author(s):  
Suresh Kallam ◽  
Rizwan Patan ◽  
Tathapudi V. Ramana ◽  
Amir H. Gandomi

Data are presently being produced at an increased speed in different formats, which complicates the design, processing, and evaluation of the data. The MapReduce algorithm is a distributed file system that is used for big data parallel processing. Current implementations of MapReduce assist in data locality along with robustness. In this study, a linear weighted regression and energy-aware greedy scheduling (LWR-EGS) method were combined to handle big data. The LWR-EGS method initially selects tasks for an assignment and then selects the best available machine to identify an optimal solution. With this objective, first, the problem was modeled as an integer linear weighted regression program to choose tasks for the assignment. Then, the best available machines were selected to find the optimal solution. In this manner, the optimization of resources is said to have taken place. Then, an energy efficiency-aware greedy scheduling algorithm was presented to select a position for each task to minimize the total energy consumption of the MapReduce job for big data applications in heterogeneous environments without a significant performance loss. To evaluate the performance, the LWR-EGS method was compared with two related approaches via MapReduce. The experimental results showed that the LWR-EGS method effectively reduced the total energy consumption without producing large scheduling overheads. Moreover, the method also reduced the execution time when compared to state-of-the-art methods. The LWR-EGS method reduced the energy consumption, average processing time, and scheduling overhead by 16%, 20%, and 22%, respectively, compared to existing methods.


2017 ◽  
Vol 90 (8-9) ◽  
pp. 1191-1204 ◽  
Author(s):  
Ping Wang ◽  
Jing Liu ◽  
Jinlong Lin ◽  
Chao-Hsien Chu

2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


Author(s):  
Archana Kollu ◽  
◽  
Sucharita Vadlamudi ◽  

Energy management of the cloud datacentre is a challenging task, especially when the cloud server receives a number of the user’s request simultaneously. This requires an efficient method to optimally allocate the resources to the users. Resource allocation in cloud data centers need to be done in optimized manner for conserving energy keeping in view of Service Level Agreement (SLA). We propose, Eagle Strategy (ES) based Modified Particle Swarm Optimization (ES-MPSO) to minimize the energy consumption and SLA violation. The Eagle Strategy method is applied due to its efficient local optimization technique. The Cauchy Mutation method which schedules the task effectively and minimize energy consumption, is applied to the proposed ES-MPSO method for improving the convergence performance. The simulation result shows that the energy consumption of ES-MPSO is 42J and Particle Swarm Optimization (PSO) is 51J. The proposed method ES-MPSO achieves higher efficiency compared to the PSO method in terms of energy management and SLA.


Author(s):  
Shiv Prakash ◽  
Deo Prakash Vidyarthi

Consumption of energy in the large computing system is an important issue not only because energy sources are depleting fast but also due to the deteriorating environmental conditions. A computational grid is a large heterogeneous distributed computing platform which consumes enormous energy in the task execution. Energy-aware job scheduling, in the computational grid, is an important issue that has been addressed in this work. If the tasks are properly scheduled, keeping the optimal energy concern, it is possible to save the energy consumed by the system in the task execution. The prime objective, in this work, is to schedule the dependent tasks of a job, on the grid nodes with optimal energy consumption. Energy consumption is estimated with the help of Dynamic Voltage Frequency Scaling (DVFS). Makespan, while optimizing the energy consumption, is also taken care of in the proposed model. GA is applied for the purpose and therefore the model is named as Energy Aware Genetic Algorithm (EAGA). Performance evaluation of the proposed model is done using GridSim simulator. A comparative study with other existing models viz. min-min and max-min proves the efficacy of the proposed model.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840114 ◽  
Author(s):  
Mei Dai ◽  
Zhicheng Ji ◽  
Yan Wang

This paper concentrates on energy conservation in flexible manufacturing system. In addition to the energy saving of single machine tool, it is significant to reduce energy consumption in the two sub-systems of process planning and shop scheduling. Compared to traditional methods that consider the two sub-systems separately, integrated optimization of these sub-systems further improves the energy efficiency of the job shop. Furthermore, the transportation of jobs and semi-manufactured jobs in the process have been ignored in previous research, which has a great influence on the process routes selecting, machine dispatching and energy consumption. Therefore, this paper proposes an energy-aware multi-objective integrated optimization model of process planning and shop scheduling considering transportation. Parameters are optimized simultaneously including work piece machining feature selecting, process method selecting, processing sequence and machine dispatching of each job. The non-dominated sorting genetic algorithm is adopted to minimize the total energy consumption and makespan. Finally, a case study using the proposed model is employed to verify that energy consumption of transportation has authentically influence on total energy consumption and scheduling scheme.


2020 ◽  
Vol 11 (3) ◽  
pp. 22-41
Author(s):  
Akkrabani Bharani Pradeep Kumar ◽  
P. Venkata Nageswara Rao

Over the past few decades, computing environments have progressed from a single-user milieu to highly parallel supercomputing environments, network of workstations (NoWs) and distributed systems, to more recently popular systems like grids and clouds. Due to its great advantage of providing large computational capacity at low costs, cloud infrastructures can be employed as a very effective tool, but due to its dynamic nature and heterogeneity, cloud resources consuming enormous amount of electrical power and energy consumption control becomes a major issue in cloud datacenters. This article proposes a comprehensive prediction-based virtual machine management approach that aims to reduce energy consumption by reducing active physical servers in cloud data centers. The proposed model focuses on three key aspects of resource management namely, prediction-based delay provisioning; prediction-based migration, and resource-aware live migration. The comprehensive model minimizes energy consumption without violating the service level agreement and provides the required quality of service. The experiments to validate the efficacy of the proposed model are carried out on a simulated environment, with varying server and user applications and parameter sizes.


Sign in / Sign up

Export Citation Format

Share Document