A Method for Tracking Dim Target Using Particle Filter

2014 ◽  
Vol 602-605 ◽  
pp. 3127-3130
Author(s):  
Hong Wei Quan ◽  
Jun Hua Li ◽  
Da Yu Huang

Traditional methods encountered two serious problems in tracking dim targets. One is the nonlinearity of the system model, and other is the low SNR of measurement signals. The two problems are hardly solved simultaneously in practical engineering applications. The particle filter is a recursive numerical technique which uses random sampling to approximate the optimal evaluation to target tracking problems. In this paper, we developed a method for tracking dim target using particle filter. Simulation results showed that the tracking performance of this method has greatly improved compared with classical extended Kalman filter and unscented Kalman filter.

2018 ◽  
Vol 160 ◽  
pp. 02008
Author(s):  
Xiong Zhenkai ◽  
Li Fanying ◽  
Zhang Lei

Aiming at the model adaptability and the filter precision on the maneuvering target on-axis tracking, The paper put forward a filter algorithm based on modified current statistical model. The algorithm can enhance the model adaptability to the weak and non-maneuvering maneuvering target. The method uses Unscented Kalman Filter to obtain the importance density function of each particle, improves the Particle Filter estimation performance.By applying the proposed algorithm to the on-axis tracking system, the simulation results demonstrate that algorithm can effectively improve filter performance and tracking precision.


2014 ◽  
Vol 615 ◽  
pp. 244-247
Author(s):  
Dong Wang ◽  
Guo Yu Lin ◽  
Wei Gong Zhang

The wheel force transducer (WFT) is used to measure dynamic wheel loads. Unlike other force sensors, WFT is rotating with the wheel. For this reason, the outputs and the inputs of the transducer are nonlinearly related, and traditional Kalman Filter is not suitable. In this paper, a new real-time filter algorithm utilizing Quadrature Kalman Filter (QKF) is proposed to solve this problem. In Quadrature Kalman Filter, Singer model is introduced to track the wheel force, and the observation function is established for WFT. The simulation results illustrate that the new filter outperforms the traditional Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF).


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2139
Author(s):  
Xiuqiong Chen ◽  
Jiayi Kang ◽  
Mina Teicher ◽  
Stephen S.-T. Yau

Nonlinear filtering is of great significance in industries. In this work, we develop a new linear regression Kalman filter for discrete nonlinear filtering problems. Under the framework of linear regression Kalman filter, the key step is minimizing the Kullback–Leibler divergence between standard normal distribution and its Dirac mixture approximation formed by symmetric samples so that we can obtain a set of samples which can capture the information of reference density. The samples representing the conditional densities evolve in a deterministic way, and therefore we need less samples compared with particle filter, as there is less variance in our method. The numerical results show that the new algorithm is more efficient compared with the widely used extended Kalman filter, unscented Kalman filter and particle filter.


2020 ◽  
Author(s):  
Peng Gu ◽  
Zhongliang Jing ◽  
Liangbin Wu

AbstractOne purpose of target tracking is to estimate the states of targets, and unscented Kalman filter is one of the effective algorithms for estimating in the nonlinear tracking problem. Considering the characteristics of complex maneuverability, it is easy to reduce the tracking accuracy and cause divergence due to the mismatch between the system model and the practical target motion model. Adaptive fading factor is an effective counter to this problem, having been instrumental in solving accuracy and divergence problems. Fading factor can adaptively adjust covariance matrix online to compensate model mismatch error. Moreover, fading factor not only improves the filtering accuracy, but also automatically adjusts the error covariance in response to the different situation. The simulation results show that the adaptive fading factor unscented Kalman filter has more advantages in target tracking and it can be better applied to nonlinear target tracking.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenxian Duan ◽  
Chuanxue Song ◽  
Yuan Chen ◽  
Feng Xiao ◽  
Silun Peng ◽  
...  

An accurate state of charge (SOC) can provide effective judgment for the BMS, which is conducive for prolonging battery life and protecting the working state of the entire battery pack. In this study, the first-order RC battery model is used as the research object and two parameter identification methods based on the least square method (RLS) are analyzed and discussed in detail. The simulation results show that the model parameters identified under the Federal Urban Driving Schedule (HPPC) condition are not suitable for the Federal Urban Driving Schedule (FUDS) condition. The parameters of the model are not universal through the HPPC condition. A multitimescale prediction model is also proposed to estimate the SOC of the battery. That is, the extended Kalman filter (EKF) is adopted to update the model parameters and the adaptive unscented Kalman filter (AUKF) is used to predict the battery SOC. The experimental results at different temperatures show that the EKF-AUKF method is superior to other methods. The algorithm is simulated and verified under different initial SOC errors. In the whole FUDS operating condition, the RSME of the SOC is within 1%, and that of the voltage is within 0.01 V. It indicates that the proposed algorithm can obtain accurate estimation results and has strong robustness. Moreover, the simulation results after adding noise errors to the current and voltage values reveal that the algorithm can eliminate the sensor accuracy effect to a certain extent.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 214
Author(s):  
Yanbo Wang ◽  
Fasheng Wang ◽  
Jianjun He ◽  
Fuming Sun

The particle filter method is a basic tool for inference on nonlinear partially observed Markov process models. Recently, it has been applied to solve constrained nonlinear filtering problems. Incorporating constraints could improve the state estimation performance compared to unconstrained state estimation. This paper introduces an iterative truncated unscented particle filter, which provides a state estimation method with inequality constraints. In this method, the proposal distribution is generated by an iterative unscented Kalman filter that is supplemented with a designed truncation method to satisfy the constraints. The detailed iterative unscented Kalman filter and truncation method is provided and incorporated into the particle filter framework. Experimental results show that the proposed algorithm is superior to other similar algorithms.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 2233-2246 ◽  
Author(s):  
Inam Ullah ◽  
Yu Shen ◽  
Xin Su ◽  
Christian Esposito ◽  
Chang Choi

2012 ◽  
Vol 466-467 ◽  
pp. 1329-1333
Author(s):  
Jing Mu ◽  
Chang Yuan Wang

We present the new filters named iterated cubature Kalman filter (ICKF). The ICKF is implemented easily and involves the iterate process for fully exploiting the latest measurement in the measurement update so as to achieve the high accuracy of state estimation We apply the ICKF to state estimation for maneuver reentry vehicle. Simulation results indicate ICKF outperforms over the unscented Kalman filter and square root cubature Kalman filter in state estimation accuracy.


2020 ◽  
Vol 10 (15) ◽  
pp. 5045 ◽  
Author(s):  
Ming Lin ◽  
Byeongwoo Kim

The location of the vehicle is a basic parameter for self-driving cars. The key problem of localization is the noise of the sensors. In previous research, we proposed a particle-aided unscented Kalman filter (PAUKF) to handle the localization problem in non-Gaussian noise environments. However, the previous basic PAUKF only considers the infrastructures in two dimensions (2D). This previous PAUKF 2D limitation rendered it inoperable in the real world, which is full of three-dimensional (3D) features. In this paper, we have extended the previous basic PAUKF’s particle weighting process based on the multivariable normal distribution for handling 3D features. The extended PAUKF also raises the feasibility of fusing multisource perception data into the PAUKF framework. The simulation results show that the extended PAUKF has better real-world applicability than the previous basic PAUKF.


2013 ◽  
Vol 427-429 ◽  
pp. 675-679 ◽  
Author(s):  
Qiang Zhu ◽  
Jian Xun Li

Registration and nonlinearity are two crucial factors affecting the performance of the two-station passive locating system. In this paper, an online joint registration and data fusion algorithm is proposed to estimate the sensor bias and target state simultaneously using the angle-only measurements from the two ownship stations. The system model of the passive radar is firstly developed followed by the expectation-maximization (EM) approach dealing with the derivation of maximum likelihood (ML) function of the complete data. The unscented Kalman filter (UKF) is chosen to alleviate the influence caused by nonlinearity generated in the measurement function. Computer simulation shows that the proposed method is effective and reliable for this specific tracking scenario.


Sign in / Sign up

Export Citation Format

Share Document