The Design of the Horizontal Cross-Flow Scrubbing Tower

2014 ◽  
Vol 602-605 ◽  
pp. 734-737
Author(s):  
Lian Ge Ou Yang ◽  
Miao Zhang ◽  
Shui Ting Zhou ◽  
Cui Can Tan

Directed at the working conditions of waste discharging hall in a waste incineration power plant, put forward the design scheme of the horizontal scrubbing tower, used Eckert's current correlative graph and the Bain-Hogan correlation, determined the wind needed for treatment and size parameters of washing tower, worked out at the flooding point gas velocity and the wind resistance. Based on CREO, modeled a washing tower model, and established the analysis model of scrubbing tower bodies by using ANSYS. The calculation results indicate that the maximum deformation and stress are 1.9623mm and 87.7.7MPa, and all the main parameters meet the design requirements.

2010 ◽  
Vol 37-38 ◽  
pp. 491-495 ◽  
Author(s):  
Jing Shun Fu ◽  
Jun Feng Wang ◽  
Jin Wang

The heavy-duty truck’s gearbox housing is studied in this paper. The analysis model is built with finite element software. MPC (multipoint constraint) contact algorithm is used to simulate the connections between different gearbox housings. The strength and stiffness of gearbox housing is calculated at its low-speed load case in the first gear. The contour of the stress and displacement is obtained through the calculation results. The results show that the housing meets the design requirements and it provides a reference for optimization and improvement of the gearbox housing.


2022 ◽  
Vol 355 ◽  
pp. 02055
Author(s):  
Guojing Ye ◽  
Jinsong Zhou ◽  
Bingshao Li

Based on the actual parameters of the capacitor energy storage cabinet on the top of the monorail train, built the cabinet’s finite element model. Then, according to EN 12663-1, set the calibration conditions and fatigue working conditions. Carried out the simulation calculation under different conditions, respectively. The calculation results under the static calibration conditions show that the maximum equivalent stress of each node on the model is smaller than the allowable stress under all working conditions. Therefore, the static strength of the cabinet meets the design requirements. Plotted Goodman fatigue limit diagrams of the cabinet’s base metal and weld and modified them in the Smith form. Then plotted the average stress and stress amplitude under fatigue working conditions in the corresponding scatter diagram. The diagram s show that all points are located within the permitted area. The results show that the fatigue strength of the cabinet meets the requirements of design and use.


2013 ◽  
Vol 859 ◽  
pp. 143-148
Author(s):  
Yang Xu ◽  
Ding Ling Li ◽  
Li Peng ◽  
Yan Xiao ◽  
Yi Hua Nie

The finite element analysis model was built as the real scale for mortar arch framework slope protection, and the displacement and strain at different points were collected by vertical loading pressure. So the mechanical mechanism can be studied, and the analysis was done between calculation results and testing results of solid miniature model. The studying results show that the point on the arch foot is the worst stress place for each arch, and the total displacement increase nonlinear as the distance from the slope top increases, and the bump phenomenon exists in the bottom of slope, the points are likely to be broken.


2007 ◽  
Vol 31 (2) ◽  
pp. 167-190 ◽  
Author(s):  
Zhang Ying ◽  
Yao Yan-An ◽  
Cha Jian-Zhong

This paper proposed a novel concept of active balancer for dynamic balancing of planar mechanisms. Somewhat similar to a vibration absorber, the active balancer is designed as an independent device, which is placed outside of the mechanism to be balanced and can be installed easily. It consists of a two degree-of-freedom (DOF) linkage with two input shafts, one of which is connected to the output shaft of the mechanism to be balanced by a joint coupling, and the other one is driven by a controllable motor. Flexible dynamic balancing adapted to different working conditions can be achieved by varying speed trajectories of the control motor actively. A design method is developed for selecting suitable speed trajectories and link parameters of the two DOF linkage of the balancer to meet various design requirements and constraints. Numerical examples are given to demonstrate the design procedure and to verify the feasibility of the proposed concept.


2013 ◽  
Vol 663 ◽  
pp. 87-91
Author(s):  
Ying Bo Pang

As an effective way of passive damping, isolation technology has been widely used in all types of building structures. Currently, for its theoretical analysis, it usually follows the rigid foundation assumption and ignores soil-structure interaction, which results in calculation results distortion in conducting seismic response analysis. In this paper, three-dimensional finite element method is used to establish finite element analysis model of large chassis single-tower base isolation structure which considers and do not consider soil-structure interaction. The calculation results show that: after considering soil-structure interaction, the dynamic characteristics of the isolation structure, and seismic response are subject to varying degrees of impact.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Jiang Chang ◽  
Gongping Wu ◽  
Hanwei Tang

Based on relative theories of gas dynamics and computational fluid dynamics, the flow field computation software ANSYS Fluent was used to simulate the steady flow field of the solid type ignition device of liquid-propellant rocket engine in two working conditions (condition I: without ignition channel, condition II: with ignition channel). On this basis, the influence of ignition channel on the working characteristics of the solid type ignition device of the liquid-propellant rocket engine was analyzed and experimentally tested. The results showed that when the pressure in the combustion chamber was atmospheric pressure, under condition II, the gas velocity at the throat of the ignition device did not reach the sonic velocity, and the position of sonic velocity moved to the downstream section of the ignition channel. Compared to condition I, the gas velocity and energy at the ignition outlet increased, which would be beneficial for initial ignition, and the gas pressure and temperature at the throat increased as well, indicating that the structural strength at the throat should be evaluated. The gas flow, gas pressure, and gas temperature at the ignition outlet decreased compared to working condition I, yet the changes were small and would have minimal effect on the ignition performance. During the pressure increase process in the combustion chamber, the gas pressure, velocity, temperature, flow, and energy at the ignition outlet experienced a steady stage in both working conditions before coming to an inflection point. The inflection point under condition II is smaller than that under condition I. To improve the ignition reliability, the working pressure of the ignition device should be further increased.


2011 ◽  
Vol 261-263 ◽  
pp. 1841-1845
Author(s):  
Hui Qin Yao

Appraisal of dam slope safety is essential for security and stability of the dyke that has been constructed for many years. According to the requirements of the appraisal of dam safety, the stability analysis of slope of Shegang dyke has been carried out by using Sweden circular-arc method, Bishop method, Engineer Corps method and Lowe method four methods under many kinds of working conditions and some conditions when the saturation line raising. Combined with the design code form embankment dam, the calculation results can be analyzed. The analysis can show that the security indexes of anti-slide under four kinds of working conditions and some conditions when the saturation line raising meet the requirements of the design code. This can provide basis for the reinforcement design of the dam, which also has a certain directive significance for the safe operation and observation of the dam in the future.


2014 ◽  
Vol 915-916 ◽  
pp. 305-308
Author(s):  
Jing Wang ◽  
Yu Xing Wang ◽  
Yan Qin Tang ◽  
Dian Wu Zhang ◽  
Zhen Hua Xu ◽  
...  

By modeling of sugarcane leaf cutting off returning to field machinery chassis and loading, this paper simplifies reasonably several different conditions of the chassis to the two forms. The finite element is used for the solution of the problem by using ANSYS software, solving the node stress contour of the chassis. Compared the maximum stress in the most dangerous working conditions to the allowable stress of the material, the result verifies the chassis strength to meet the design requirements. According to the vibration of the chassis at work, analyzing the first sixth modal of the chassis, and comparing with excitation frequency shows that the design of the chassis avoids the excitation frequency, which does not cause resonance at work. The results show that the chassis meets the design requirements.


Author(s):  
Xianggeng Wei ◽  
Fei Qin ◽  
Lei Shi ◽  
Baoqing Zhang ◽  
Guoqiang He

The ejector rocket is one of the core components of the rocket based combined cycle propulsion system, and must be capable of variable working conditions. In order to meet technical requirements for RBCC application, the variable duty operating ejector rocket using the gas Oxygen/Kerosene was designed based on the gas pressurized propellant feed systems. Hot firing tests of four different working conditions had been completed. Experimental results show that the designed ejector rocket engine was stable and reliable, and the working parameters met the design requirements, and the working conditions were adjusted quickly. It lays a foundation for the study of the RBCC engine test and the engine technology of large adjustment ratio.


Author(s):  
Zhang Dabin ◽  
Zhiwei Zhou ◽  
Heng Xie ◽  
Tang Yang

The fusion-fission hybrid conceptual reactor is a proposed means of generating power, which adopts a water cooled fission blanket based on ITER. Due to the water cooled fission blanket, safety performance of the hybrid reactor should be considered, including decay heat remove, core uncovered, core meltdown, core degradation, radioactivity releases, etc., similar with the PWRs. The main goal of this work is to develop the fission blanket model by using MELCOR code, and to evaluate the safety performance under severe accidents preliminarily. Based on MELCOR 1.8.5, some modification is made for the severe accident analysis of fission blanket. Using modified MELCOR code, an analysis model is developed for the fission blanket and the cooling loop. The strategy of the In-Vessel Retention (IVR) using the ex-vessel cooling method is evaluated during a large break LOCA. The calculation results describes the main phenomena during the severe accident progression, including core dry out, meltdown, relocation, etc.. Simulation result is shown that the decay heat in the fission zone can be removed out by the ex-vessel cooling system merely, and the fuel max temperature will not reach the melting point.


Sign in / Sign up

Export Citation Format

Share Document