Modeling and Analysis on Optical Path of Infrared Reflective Photoelectric Sensor

2014 ◽  
Vol 614 ◽  
pp. 312-316
Author(s):  
Zhao Yun Qiu ◽  
Zhan Xiu Cai ◽  
Ying Yuan Fan ◽  
Ren Hong Zhao

In order to reduce the blind area and enlarge the measurement range of reflective photoelectric sensor, a simplified optical model is established to prove that the main factors affecting performance of the conventional reflective photoelectric sensor is optical design parameters defects. Through a simple pre partial emission angle design of light path and constructing the optical path model, a calculation method is given to calculate blind area and measurement range. Results show that with small blind area, wide measurement range and high sensitivity, the best measuring distance of the acute angle optical path model can be accurately calculated after the emitted light intensity reaches the set value due to its quantitative characteristic; the acute angle optical path model performance parameters are better than the right angle optical path model. The research has guiding significance for the design of reflective photoelectric sensor.

2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Farid Atry ◽  
Israel Jacob De La Rosa ◽  
Kevin R. Rarick ◽  
Ramin Pashaie

In the past decades, spectral-domain optical coherence tomography (SD-OCT) has transformed into a widely popular imaging technology which is used in many research and clinical applications. Despite such fast growth in the field, the technology has not been readily accessible to many research laboratories either due to the cost or inflexibility of the commercially available systems or due to the lack of essential knowledge in the field of optics to develop custom-made scanners that suit specific applications. This paper aims to provide a detailed discussion on the design and development process of a typical SD-OCT scanner. The effects of multiple design parameters, for the main optical and optomechanical components, on the overall performance of the imaging system are analyzed and discussions are provided to serve as a guideline for the development of a custom SD-OCT system. While this article can be generalized for different applications, we will demonstrate the design of a SD-OCT system and representative results for in vivo brain imaging. We explain procedures to measure the axial and transversal resolutions and field of view of the system and to understand the discrepancies between the experimental and theoretical values. The specific aim of this piece is to facilitate the process of constructing custom-made SD-OCT scanners for research groups with minimum understanding of concepts in optical design and medical imaging.


Photonics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 101 ◽  
Author(s):  
Angel García-Botella ◽  
Lun Jiang ◽  
Roland Winston

Nonimaging optics is focused on the study of techniques to design optical systems for the purpose of energy transfer instead of image forming. The flowline optical design method, based on the definition of the geometrical flux vector J, is one of these techniques. The main advantage of the flowline method is its capability to visualize and estimate how radiant energy is transferred by the optical systems using the concepts of vector field theory, such as field line or flux tube, which overcomes traditional raytrace methods. The main objective this paper is to extend the flowline method to analyze and design real 3D concentration and illumination systems by the development of new simulation techniques. In this paper, analyzed real 3D refractive and reflective systems using the flowline vector potential method. A new constant term of optical path length is introduced, similar and comparable to the gauge invariant, which produces a correction to enable the agreement between raytrace- and flowline-based computations. This new optical simulation methodology provides traditional raytrace results, such as irradiance maps, but opens new perspectives to obtaining higher precision with lower computation time. It can also provide new information for the vector field maps of 3D refractive/reflective systems.


2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Hung-Lin Hsieh ◽  
Ju-Yi Lee ◽  
Yu-Che Chung

AbstractA wavelength-modulated heterodyne grating shearing interferometry using a birefringent crystal is proposed for two-dimensional displacement measurement. There is a difference in the optical path lengths of the p- and s- polarizations of the light beam in the birefringent crystal because of the double refraction caused by the birefringence. By passing through the unequal-path-length optical configuration, the wavelength-modulated light beam is converted into a heterodyne light beam having two frequencies. The modulated heterodyne light beam is further combined with grating-shearing interferometry based on the quasi-common-optical-path (QCOP) design concept. According to the working principle and the Jones calculation, the displacement information of a moving grating can be obtained by means of the optical phase variation resulting from the grating. Theoretical analysis shows that the measurement sensitivity of the proposed method is about 0.134°/nm. The experimental results indicate that the resolution is about 10 nm for the centimetric-level measurement range.


IJARCCE ◽  
2016 ◽  
Vol 5 (5) ◽  
pp. 949-953 ◽  
Author(s):  
Ipek Atik ◽  
O Faruk Farsakoglu ◽  
Nurdal Watsuji ◽  
Saban Yilmaz

Author(s):  
Federico Barbieri ◽  
J. Wesley Hines ◽  
Michael Sharp ◽  
Mauro Venturini

Prognostics is an emerging science of predicting the health condition of a system and/or its components, based upon current and previous system status, with the ultimate goal of accurate prediction of the Remaining Useful Life (RUL). Based on this assumption, components/systems can be monitored to track the health state during operation. Acquired data are generally processed to extract relevant features related to the degradation condition of the component/system. Often, it is beneficial to combine several of these degradation parameters through an optimization process to develop a single parameter, called prognostic parameter, which can be trended to estimate the RUL. The approach adopted in this paper consists of a prognostic procedure which involves prognostic parameter generation and General Path Model (GPM) prediction. The Genetic Algorithm (GA) and Ordinary Least Squares (OLS) optimization methods will be used to develop suitable prognostic parameters from the selected features. Both time and frequency domain analysis will be investigated. Steady-state data obtained from electric motor accelerated degradation testing is used for method validation. Ten three-phase 5HP induction were run through temperature and humidity accelerated degradation cycles on a weekly basis. Of those, five presented similar degradation pathways due to bearing failure modes. The results show that the OLS method, on average, generated the best prognostic parameter performance using a combination of time domain features. However, the best single model performance was obtained using the GA methodology. In this case, the estimated RUL nearly coincided with the true RUL with an absolute percent error averaging under 5% near the end of life.


2021 ◽  
Author(s):  
Jason Goetz ◽  
Robin Kohrs ◽  
Eric Parra Hormazábal ◽  
Manuel Bustos Morales ◽  
María Belén Araneda Riquelme ◽  
...  

Abstract. Knowing the source and runout of debris-flows can help in planning strategies aimed at mitigating these hazards. Our research in this paper focuses on developing a novel approach for optimizing runout models for regional susceptibility modelling, with a case study in the upper Maipo river basin in the Andes of Santiago, Chile. We propose a two-stage optimization approach for automatically selecting parameters for estimating runout path and distance. This approach optimizes the random walk and Perla's two-parameter modelling components of the open-source Gravitational Process Path (GPP) modelling framework. To validate model performance, we assess the spatial transferability of the optimized runout model using spatial cross-validation, including exploring the model's sensitivity to sample size. We also present diagnostic tools for visualizing uncertainties in parameter selection and model performance. Although there was considerable variation in optimal parameters for individual events, we found our runout modelling approach performed well at regional prediction of potential runout areas. We also found that although a relatively small sample size was sufficient to achieve generally good runout modelling performance; larger samples sizes (i.e. ≥ 80) had higher model performances and lower uncertainties for estimating runout distances at unknown locations. We anticipate that this automated approach using open-source software R and SAGA-GIS will make process-based debris-flow models more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.


2019 ◽  
Vol 11 (20) ◽  
pp. 2404 ◽  
Author(s):  
Niu ◽  
Meng ◽  
He ◽  
Dong

Optical design parameters for a ground-based infrared sensor rely strongly on the target’s optical radiation properties. Infrared (IR) optical observability and imaging simulations of an Earth entry vehicle were evaluated using a comprehensive numerical model. Based on a ground-based IR detection system, this model considered many physical mechanisms including thermochemical nonequilibrium reacting flow, radiative properties, optical propagation, detection range, atmospheric transmittance, and imaging processes. An orbital test vehicle (OTV) was selected as the research object for analysis of its observability using a ground-based infrared system. IR radiance contours, maximum detecting range (MDR), and thermal infrared (TIR) pixel arrangement were modeled. The results show that the distribution of IR radiance is strongly dependent on the angle of observation and the spectral band. Several special phenomena, including a strong receiving region (SRR), a characteristic attitude, a blind zone, and an equivalent zone, are all found in the varying altitude MDR distributions of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) irradiances. In addition, the possible increase in detectivity can greatly improve the MDR at high altitudes, especially for the backward and forward views. The difference in the peak radiance of the LWIR images is within one order of magnitude, but the difference in that of the MWIR images varies greatly. Analyses and results indicate that this model can provide guidance in the design of remote ground-based detection systems.


Photonics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 11 ◽  
Author(s):  
Magnus Engholm ◽  
Krister Hammarling ◽  
Henrik Andersson ◽  
Mats Sandberg ◽  
Hans-Erik Nilsson

There is an increasing demand for compact, reliable and versatile sensor concepts for pH-level monitoring within several industrial, chemical as well as bio-medical applications. Many pH sensors concepts have been proposed, however, there is still a need for improved sensor solutions with respect to reliability, durability and miniaturization but also for multiparameter sensing. Here we present a conceptual verification, which includes theoretical simulations as well as experimental evaluation of a fiber optic pH-sensor based on a bio-compatible pH sensitive material not previously used in this context. The fiber optic sensor is based on a Mach-Zehnder interferometric technique, where the pH sensitive material is coated on a short, typically 20-25 mm thin core fiber spliced between two standard single mode fibers. The working principle of the sensor is simulated by using COMSOL Multiphysics. The simulations are used as a guideline for the construction of the sensors that have been experimentally evaluated in different liquids with pH ranging from 1.95 to 11.89. The results are promising, showing the potential for the development of bio-compatible fiber optic pH sensor with short response time, high sensitivity and broad measurement range. The developed sensor concept can find future use in many medical- or bio-chemical applications as well as in environmental monitoring of large areas. Challenges encountered during the sensor development due to variation in the design parameters are discussed.


Author(s):  
R.A. Borisov ◽  
I.V. Antonets ◽  
A.V. Krotov

Information on the parameters of static atmospheric pressure and total pressure of the incoming air flow is the primary information in the air signal system, which is part of the integrated aircraft control system. This information makes it possible to calculate the altitude and speed of the aircraft for automated and automatic control. Static and total pressures are measured by aerometric parameter sensors, whose technical characteristics largely determine the range and values of the measurement accuracy of the air signal system. Relying on the requirements for aircraft flight safety and in accordance with the existing standards for horizontal and vertical separation, rather stringent requirements are imposed on the accuracy of air pressure measurement. Instrumental errors in measuring static and total air flow pressures with a probability of 0.95 should not exceed 0.02 and 0.05 % of the measurement range. The considered original aerometric pressure sensor based on an optical rule, whose high sensitivity requires minimal deformation of the elastic sensitive element, makes it possible to fulfill these requirements. The non-contact digital information retrieval and the operation of the information system under vacuum conditions significantly increased the efficiency of measurement processes. The paper focuses on an algorithm for calculating the main design parameters of elastic sensitive elements in almost the entire range of their standard sizes taking into account the technical capabilities of the secondary converter. The results of the experiments and experimental studies confirmed the sufficiency of theoretical methods for calculating the parameters of elastic elements for pressure sensors


1994 ◽  
Vol 116 (3) ◽  
pp. 164-166 ◽  
Author(s):  
H. M. Gu¨ven

In this paper, a closed-form expression for intercept factor is used to carry out the optimization of parabolic trough collector geometry (rim angle and concentration ratio). It is shown that the presented closed-form expression eliminates the need for a detailed ray-trace computer code and facilitates optimization of the collector optical design parameters.


Sign in / Sign up

Export Citation Format

Share Document