Kinematic Optimization of Corn Full-Automatic Transplanting Mechanism with Non-Circular Gears Based on Matlab

2014 ◽  
Vol 635-637 ◽  
pp. 1408-1411
Author(s):  
Yan Jun Zuo ◽  
Wen Ge Li

In order to guarantee the high and stable yields, improve the economic benefits and promote the transplanting technology of corn. The pitch curve of non-circular gear is fitted based on quasi uniform B-spline theory, corn full-automatic transplanting mechanism has been invented, and its kinematics mathematical model has been built through analysis of transplanting mechanism. The computer aided analytical and optimized software has been developed on software Matlab’s platform. Through tuning the data points by man-machine interaction, pitch curve of non-circular gear and structural parameters are optimized, until track and attitude of mechanism meet the demands for corn transplanting process. The 3 actions of taking, transportation and planting corn transplantation can be achieved orderly by a mechanism.

2014 ◽  
Vol 624 ◽  
pp. 181-186
Author(s):  
Yan Jun Zuo ◽  
Xiao Xu Yu ◽  
Wen Ge Li ◽  
Hui Xuan Zhu ◽  
Hai Peng Ji

In order to realize the mechanized transplanting of rice pot seedling and ensure our food security, The pitch curve of non-circular gear is fitted based on cubic, non-uniform and rational B-spline curve. The planetary gear train transplanting mechanism has been invented for ride type, and kinematics mathematical model has been built through the kinematics analysis of transplanting mechanism. The computer aided analytical and optimized software has been developed by using software platform of Matlab. Through tuning the data points by man-machine interaction, pitch curve of non-circular gear is optimized and structural parameters are obtained, which can meet the demand of track and attitude in the transplanting process for rice pot seedling. In condition of the parameters, the correctness of the established model is verified by the virtual experiment by software of Adams.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


2017 ◽  
Vol 121 (1241) ◽  
pp. 940-969 ◽  
Author(s):  
R. Hayes ◽  
R. Dwight ◽  
S. Marques

ABSTRACTThe assimilation of discrete data points with model predictions can be used to achieve a reduction in the uncertainty of the model input parameters, which generate accurate predictions. The problem investigated here involves the prediction of limit-cycle oscillations using a High-Dimensional Harmonic Balance (HDHB) method. The efficiency of the HDHB method is exploited to enable calibration of structural input parameters using a Bayesian inference technique. Markov-chain Monte Carlo is employed to sample the posterior distributions. Parameter estimation is carried out on a pitch/plunge aerofoil and two Goland wing configurations. In all cases, significant refinement was achieved in the distribution of possible structural parameters allowing better predictions of their true deterministic values. Additionally, a comparison of two approaches to extract the true values from the posterior distributions is presented.


2013 ◽  
Vol 57 (04) ◽  
pp. 241-261
Author(s):  
Francisco L. Perez-Arribas ◽  
Erno Peter-Cosma

This article presents a mathematical method for producing hard-chine ship hulls based on a set of numerical parameters that are directly related to the geometric features of the hull and uniquely define a hull form for this type of ship. The term planing hull is used generically to describe the majority of hard-chine boats being built today. This article is focused on unstepped, single-chine hulls. B-spline curves and surfaces were combined with constraints on the significant ship curves to produce the final hull design. The hard-chine hull geometry was modeled by decomposing the surface geometry into boundary curves, which were defined by design constraints or parameters. In planing hull design, these control curves are the center, chine, and sheer lines as well as their geometric features including position, slope, and, in the case of the chine, enclosed area and centroid. These geometric parameters have physical, hydrodynamic, and stability implications from the design point of view. The proposed method uses two-dimensional orthogonal projections of the control curves and then produces three-dimensional (3-D) definitions using B-spline fitting of the 3-D data points. The fitting considers maximum deviation from the curve to the data points and is based on an original selection of the parameterization. A net of B-spline curves (stations) is then created to match the previously defined 3-D boundaries. A final set of lofting surfaces of the previous B-spline curves produces the hull surface.


2020 ◽  
Author(s):  
Chun-Hua Du ◽  
Yan-Chao Zhang ◽  
Ya-Hui Cui ◽  
Shu-Na Dong ◽  
Hong-Hu Ji ◽  
...  

Abstract In order to accurately predict the hysteresis characteristics of finger seal, the minimum hysteresis which can directly reflect the hysteresis of finger seal is proposed to characterize the hysteresis of finger seal. The mathematical model for calculating the minimum hysteresis of finger seal is established, the correction coefficient in the mathematical model is determined, and the mathematical model is verified by experiments. The influence of the structure and working condition parameters of finger laminates on the hysteresis characteristics is studied based on the modified calculation model, and the rule of influence is obtained in the end. Research results show that the maximum error between the leakage characteristics numerical calculation of finger seal base on modified calculation model and the experiment results is 7.64%, and the mathematical model of the minimum hysteresis is reasonable and reliable. The descending order of influence degree of structural parameters on the hysteresis characteristics of finger seal is: thickness of each finger laminate, finger repeat angle, arc radius of the finger beam arcs‘ centers, diameter of the finger base circle, width of the interstice between fingers, arc radius of finger beam. The research results provide a theoretical basis for further research on the influence of hysteresis on the finger seal leakage characteristics and the optimal design of finger seal structure.


2019 ◽  
Vol 111 ◽  
pp. 06010
Author(s):  
Ruoyu Zhang ◽  
Haichao Wang ◽  
Xiaozhou Wu ◽  
Xiangli Li ◽  
Lin Duanmu

The thermal energy storage (TES) technology is an effective method to enhance the planning and the economy of the combined heat and power (CHP) plants, while it has still not been broadly promoted in China. In this paper we firstly establish a mathematical model for a Chinese CHP plant with TES. Then the EnergyPRO software is used to find the optimum type of the TES tank in a three-tariff electricity pricing market and the operation strategy of the CHP plant with the selected TES tank is studied. Thirdly, the economic benefits of the system with/without TES is evaluated. The results show that adding a TES tank with volume of 24000m3 can significantly increase operational profits of the CHP system and reduce the use of peak-shaving heat source.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880957 ◽  
Author(s):  
Dezhong Zhao ◽  
Wenhu Wang ◽  
Jinhua Zhou ◽  
Ruisong Jiang ◽  
Kang Cui ◽  
...  

Parts must be measured to evaluate the manufacturing accuracy in order to check whether their dimension is in expected tolerance. In engineering, parts with free-form surfaces are generally measured by high-precision coordinate-measuring machines. The measurement accuracy is usually improved by increasing the density of measurement points, which is time-consuming and costly. In this article, a novel sampling method of measurement points for free-form surface inspection is proposed. First, surface inspection is simplified into the inspection of a number of section curves of the surface. Second, B-spline curves constructed with an iterative method are employed to approximate these section curves. Subsequently, data points necessary to construct the B-spline curves are taken as the measurement points. Finally, the proposed method is compared with other two sampling methods. The results indicate that the proposed method greatly reduced the number of measurement points without decreasing the precision of surface modeling.


2019 ◽  
Vol 17 (1) ◽  
pp. 60-86
Author(s):  
Faoziya S.M. Musbah

Abstract Al-Iḫlāṣ is an important chapter within the Holy Quran (words of God) because it is a brief declaration of the absolute unity of God (Allah). This paper analyzes al-Iḫlāṣ mathematically in order to gain an understanding of the relationship between the letters of this chapter and their iterations. The analyzed two-dimensional data points (xi,yi) define a piecewise linear curve that is shaped like Allah’s name as it is written in Arabic. The B-spline function is used to analyze this data so as to obtain a second degree curve.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 355 ◽  
Author(s):  
Jens Jauch ◽  
Felix Bleimund ◽  
Michael Frey ◽  
Frank Gauterin

The B-spline function representation is commonly used for data approximation and trajectory definition, but filter-based methods for NWLS approximation are restricted to a bounded definition range. We present an algorithm termed NRBA for an iterative NWLS approximation of an unbounded set of data points by a B-spline function. NRBA is based on a MPF, in which a KF solves the linear subproblem optimally while a PF deals with nonlinear approximation goals. NRBA can adjust the bounded definition range of the approximating B-spline function during run-time such that, regardless of the initially chosen definition range, all data points can be processed. In numerical experiments, NRBA achieves approximation results close to those of the Levenberg–Marquardt algorithm. An NWLS approximation problem is a nonlinear optimization problem. The direct trajectory optimization approach also leads to a nonlinear problem. The computational effort of most solution methods grows exponentially with the trajectory length. We demonstrate how NRBA can be applied for a multiobjective trajectory optimization for a BEV in order to determine an energy-efficient velocity trajectory. With NRBA, the effort increases only linearly with the processed data points and the trajectory length.


Sign in / Sign up

Export Citation Format

Share Document