Study on the Dynamic Mechanical Property of High Strength Steel 18NiC250

2014 ◽  
Vol 644-650 ◽  
pp. 4763-4765
Author(s):  
Xiao Jun Shao ◽  
Peng Ke Liu ◽  
Zhi Yin Zeng ◽  
Wei Guo Guo

In this paper, dynamic mechanical property tests under different tempreture and strain rate of high strength steel 18NiC250 are conducted by means of Hopkinson pressure bar technique. The results of tests show 18NiC250 steel is not only very sensitive on strain rate, but also sensitive to temperature. The rate relative constitutive model of this steel is obtained and well predicts dynamic mechanical property after yielded.

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 374 ◽  
Author(s):  
Xin Hu ◽  
Lijing Xie ◽  
Feinong Gao ◽  
Junfeng Xiang

For the implementation of simulations for large plastic deformation processes such as cutting and impact, the development of the constitutive models for describing accurately the dynamic plasticity and damage behaviors of materials plays a crucial role in the improvement of simulation accuracy. This paper focuses on the dynamic behaviors of 45CrNiMoVA ultra-high-strength torsion bar steel. According to investigation of the Split-Hopkinson pressure bar (SHPB) and Split-Hopkinson tensile bar (SHTB) tests at different strain rate and different temperatures, 45CrNiMoVA ultra-high-strength steel is characterized by strain hardening, strain-rate hardening and thermal softening effects. Based on the analysis on the mechanism of the experimental results and the limitation of classic Johnson-Cook (J-C) constitutive model, a modified J-C model by considering the phase transition at high temperature is established. The multi-objective optimization fitting method was used for fitting model parameters. Compared with the classic J-C constitutive model, the fitting accuracy of the modified J-C model significantly improved. In addition, finite element simulations for SHPB and SHTB based on the modified J-C model are conducted. The SHPB stress-strain curves and the fracture morphology of SHTB samples from simulations are in good agreement with those from tests.


2017 ◽  
Vol 27 (5) ◽  
pp. 686-706 ◽  
Author(s):  
Zhiwu Zhu ◽  
Zhijie Liu ◽  
Qijun Xie ◽  
Yesen Lu ◽  
Dingyun Li

To reveal the influences of soil particle size on the dynamic impact mechanical properties of frozen soil, four groups of frozen soil specimens composed of different particle sizes are tested using a split-Hopkinson pressure bar. Based on the Druger–Prager failure criterion and coupled damage-plasticity, a dynamic micro-constitutive model is established for describing the dynamic mechanical behavior of the frozen soil. Macroscopically, frozen soil is assumed to be homogeneous and continuous, although a large number of micro-cracks and micro-voids are distributed randomly throughout the volume. When a frozen soil specimen is subjected to a substantial shock, the propagation of micro-cracks and the collapse of micro-voids can induce damage. The evolution equations of the two damage mechanisms are proposed. Finally, through a comparison, it was shown that simulation results agreed well with the experimental results, thus validating the suitability of the developed model.


2013 ◽  
Vol 785-786 ◽  
pp. 1240-1243
Author(s):  
Pan Xiu Wang ◽  
Gui Yun Zhou

An improved dynamic constitutive model is presented, aiming to describe the key mechanical properties and predict the bearing strength of concrete structure under static and dynamic load. This model is based on the concept of equivalent uniaxial strains and strain rate. In this paper, an equivalent uniaxial stressstrain curves are obtained by the WillamWarnke curve and take the same form as in Saenz models. Then, the bending strength of a concrete beam under different static and dynamic load was discussed.


2013 ◽  
Vol 535-536 ◽  
pp. 497-500 ◽  
Author(s):  
Zhi Wu Zhu ◽  
Guo Zheng Kang ◽  
Dong Ruan ◽  
Yue Ma ◽  
Guo Xing Lu

5083 aluminum alloy was investigated with respect to its uniaxial dynamic compressive properties over a range of strain rates using the split Hopkinson pressure bar (SHPB). The dynamic stress-strain curves of this alloy were obtained for strain rates from 1000 s-1 to 6000 s-1. Effects of strain rate, the samples size and anti-impact capability were analyzed. The experimental results show that under impaction loading, 5083 aluminum alloy has a remarkable strengthening response to strain rate and size; in particular, the responded stress increases with increasing strain rate, which implies that this alloy has high strength and high anti-impact capability.


2015 ◽  
Vol 782 ◽  
pp. 143-150
Author(s):  
Wen Wen Du ◽  
Qian Wang ◽  
Deng Hui Zhao ◽  
Lin Wang

The evolution process of a high strength steel which subjected with three different heat treatment proceedings and gets different quasi-static tensile properties was investigated in this paper. To precisely control the plastic deformation of the cylinder and capture the development process of adiabatic shear bands, stopper ring was used in Split Hopkinson Pressure Bar (SHPB). Combining the stress-strain curves and microstructures after SHPB tests, the microstructure evolution from the nucleation of adiabatic shear bands to fracture of the cylindrical steel were observed. The experimental results have demonstrated that there are similar fracture procedures of the steel treated through different heat treatments. Shear bands form firstly, then micro-cracks develop from shear bands, and lead to macro-crack finally. However, the critical strains for nucleation of ASBs and the time spending on the fracture procedure of the steel treated at different heat treatments are different. Samples treated at 900°C/AC exhibit the best resistance to adiabatic shear sensitivity when compressed under high strain rates.


Author(s):  
Juner Zhu ◽  
Yong Xia ◽  
Gongyao Gu ◽  
Qing Zhou

Sheet metals usually exhibit a certain degree of plastic anisotropy because of the rolling effect. To characterize the anisotropic behavior in simulations related to large deformation, strain-rate independent phenomenological models are frequently used in quasi-static conditions. Two functions are generally included in such a model, i.e. the yield function and the plastic potential. The former limits the stress state within the yield surface while the latter determines the direction of the plastic strain increment. Traditional plasticity models mostly assume associated flow rule, in which the two functions mentioned above are identical. With the enhanced demand of accuracy, the forms of the associated models become too complex with more and more parameters to achieve an easy calibration procedure. Alternatively, in the past decade the non-associated models were increasingly used for sheet metals. Separate functions for the two aspects of plasticity lead to efficient characterization and convenient calibration. In numerical study of dynamic loading cases, how to characterize strain-rate dependence of plasticity is an important issue. Some visco-plastic models were developed to take the rate effect into account, e.g. Johnson-Cook and Cowper-Symonds models, where the isotropic J2 flow theory was commonly used. However, when the material is severely anisotropic, this approach is very likely to be insufficient, and a model including both anisotropy and rate dependence would be needed. Extending a non-associated anisotropic model to be rate-dependent is a promising approach which has not been published in open literature to the best knowledge of the authors. Objective of the present study is to develop an applicable model for characterizing dynamic mechanical behavior of a typical high-strength steel sheet. Two steps are performed. The material is investigated under quasi-static loading firstly. Tensile test results show an obvious anisotropy which cannot be described by traditional associated models. So the non-associated Hill48 model is chosen and calibrated. Accuracy of the model is verified by a quasi-static punching test. Thereafter the dynamic material properties are obtained by conducting tensile tests at quite a few strain-rate levels covering 0.0004–1200s−1. To characterize the positive strain-rate effect in strength, the non-associated Hill48 model is extended to be visco-plastic after checking two rate-dependence formulations in existing isotropic models. With implementing the extended model into a user subroutine of ABAQUS/explicit, simulations of the dynamic tension tests are run and compared to the real experiments. A good agreement between the simulated and the experimental result is achieved using the VUMAT.


2011 ◽  
Vol 197-198 ◽  
pp. 1681-1685
Author(s):  
Jun Lin Tao ◽  
Wei Fang Xu ◽  
Gang Cheng ◽  
Xi Cheng Huang ◽  
Fang Ju Zhang ◽  
...  

In order to realize the dynamic mechanical property of a steel, the quasic-static and dynamic compressive and tensile mechanical tests of a steel are carried out. Based on the stress-strain curves of the steel, the constitutive relation is presented and it can be used to describe compressive and tensile mechanical property correspondently. The stress-strain curves at different strain rate and the obtained dynamic constitutive relationship show that the flow stress of the steel is increased with strain rate increased. The dynamic tension experimental results show that failure strain and stress of the steel are increased small with strain rate increased, and the fracture of tension sample is ductile fracture.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhangyong Zhao ◽  
Yanyu Qiu ◽  
Mingyang Wang

The dynamic compressive behaviour of dry calcareous sand under rigid confinement was characterised using a split-Hopkinson pressure bar (SHPB). Sand samples were confined inside a sleeve of hardened stainless steel and capped by a pair of aluminium cylindrical rods. This assembly was subjected to repeated dynamic compaction to attain precise bulk mass densities. It was then sandwiched between the incident and transmission bars of SHPB for dynamic compression testing. Sand specimens of three initial mass densities, namely, 1.26 g/cm3, 1.35 g/cm3, and 1.42 g/cm3, were loaded by incident pulses applying a stress of 35 MPa, 71 MPa, and 143 MPa, respectively. Experimental results show that in the strain rate range of 335 s−1 to 1253 s−1, the dynamic mechanical behaviours of dry calcareous sands exhibited no significant strain rate effect. The Lundborg model and the Murnaghan model could be used to describe the deviatoric and volumetric behaviours of calcareous sand with different initial densities, respectively.


Sign in / Sign up

Export Citation Format

Share Document