Numerical Simulation Analysis on Vertical Displacement of Step Excavation in Foundation Pit Project

2014 ◽  
Vol 651-653 ◽  
pp. 1201-1204
Author(s):  
Fang Guo

In order to study the vertical displacement distribution of foundation pit in the process of step-by-step excavation, combined with a foundation pit project, numerical simulation analysis with finite element software was carried in the research. The results show that: in the process of excavation, the maximum settlement of soil outside the pit is 41.4 mm, which is 2.95 ‰ of pit excavation depth and conforms to the recommended value in specifications. The maximum vertical displacement of soil at the bottom of foundation pit is in the center of pit. Its value is gradually increasing with the excavation, and the maximum is 60.1 mm, which is 4.32 ‰ of foundation pit depth,also,it conforms to the specifications proposed value. The proposed scheme can satisfy the vertical displacement of foundation pit excavation in the construction process.

2013 ◽  
Vol 353-356 ◽  
pp. 403-406
Author(s):  
Yong Kang Yang ◽  
Xiao Yuan Li ◽  
Wu Yang ◽  
Chun Yan Feng

Based on deformation of adjacent building with shallow foundation of foundation pit excavation, Midas GTS is adopted to establish the finite element model. Through the numerical simulation, the maximum horizontal and vertical displacement in different conditions, Influence of different SMW pile stiffness and influence of different anchor position are analyzed. The results show that (1) horizontal deformation of SMW pile is decreased at the anchor construction; (2) compared with maximum horizontal displacement of SMW pile with 25a25b28a, the maximum horizontal displacement of SMW pile with 28b is increased by 50.9, 43.3, 11.5% respectively; (3) compared with the second anchor at 1.5, 3.5m, the horizontal displacement of adjacent building is minimal by the second anchor at 2.5m.


2011 ◽  
Vol 368-373 ◽  
pp. 1327-1331
Author(s):  
Wei Min Qiu ◽  
Hai Lin Zhang ◽  
Gang Wang

With the development of urban construction, deep large pits are often located at intensive underground structure area, and the utility pipe tunnel within various pipelines is the lifeline engineering of urban environment .Thus, there is the very necessary practical significance to research on utility pipe tunnel influenced by adjacent deep Excavation. Using large finite element software ANSYS, we analysis the problem with the deep foundation pit, support system, the soil around and adjacent tubes as an entirety. In considering of the mutual interaction between support structure and soil, as well as the element birth-death technology and restart analysis technology, the deep foundation pit mode is simulated and analyzed according to the actual construction process, including the gravity initial stress analysis and the simulation analysis on the each layer soil excavation. After simulation analysis the level of utility pipe tunnel’s horizontal and vertical displacement environment in different affecting factors and reinforcement measures, it is concluded that the law of utility pipe tunnel’s horizontal and vertical displacement, further the reasonable economic measure is put forward to protect the safety of the utility pipe tunnel. Therefore the conclusion has certain reference value for designing the foundation pit construction and the protection measures on the adjacent utility pipe tunnel.


2012 ◽  
Vol 594-597 ◽  
pp. 2906-2914
Author(s):  
Chang Wen Chen

On the basis of a typical engineering, a foundation of soil nailing walls supporting simulation model of soil nailing on the structure of the excavation is established with FLAC, the construction process of the supporting structure is analyzed in the dynamic simulation. The deformation characteristics of the supporting structure are analyzed during the construction process, the law of the supporting body deformation with the difference of excavation steps is summarized. The situ test data of the deep foundation horizontal displacement and vertical displacement are obtained by testing in situ. Some useful conclusions are summarized by comparative analyzing the numerical simulation value and situ test data, providing guidance for the design and construction of the pit soil nailing wall.


2020 ◽  
pp. 2150002
Author(s):  
XIAOLI LI ◽  
LI CHEN ◽  
XIAOYAN LIU ◽  
YU ZHANG ◽  
LIFU CUI

The geological environment along a buried pipeline in permafrost regions is complex, where differential frost heave often occurs. To understand the changes in the stress behavior of pipeline structures caused by corrosion while laying them in permafrost regions, we established a thermo-mechanical coupling model of buried pipeline with corrosion defects by using finite element software. Numerical simulation analysis of buried pipeline was conducted. The effects of the frost heave length, the length of the transition section, the corrosion depth, and the corrosion length on the stress displacement were obtained. These analyses showed that the stresses and displacements of the pipeline with corrosion defects in permafrost regions can be simulated by using the finite element software numerical simulation method. Afterward, the corrosion resistances of pipelines with different corrosion lengths and depths were investigated via an electrochemical testing method. These results can provide some useful insights into the possible mechanical state of buried pipeline with regard to their design and construction, as well as some useful theoretical references for simulating real-time monitoring and safety analysis for their operation in permafrost regions.


2014 ◽  
Vol 501-504 ◽  
pp. 286-290
Author(s):  
Shan Shan Xu ◽  
Qiu Sheng Gao

Construction site-monitoring on adjacent existing building’s pile foundation,using ANSYS finite element software to simulate the deformation of adjacent pile foundation when foundation pit excavation. Combined with measured data to analyze the interaction of foundation pit excavation and adjacent existing building’s pile foundation and draw the conclusion that the measured settleme-nt of pit’s adjacent pile is greater than the model’s theoretical value and the pit excavation has certain influence on the pile foun-dation’s vertical displacement of existing buildings.


2012 ◽  
Vol 170-173 ◽  
pp. 3145-3152
Author(s):  
Ji Liang Liu ◽  
Ming Jin Chu ◽  
Shu Dong Xu ◽  
Ying Ying Yin

The author performs simulation analysis on construction process of roofing prestressed concrete beam of comprehensive service center in Beijing Institute of Civil Engineering and Architecture by finite element software Midas/Gen, so as to determine the monitoring programme according to the analysis results. The monitoring results indicate that the structure is safe; the theoretical value of simulation analysis is well matched with actual monitoring value, which means that the finite element model of construction process of roofing prestressed concrete beam is correct, the simulation method is feasible and the construction process is reasonable. It has important reference value for construction and monitoring of subsequent similar projects.


2012 ◽  
Vol 151 ◽  
pp. 484-489 ◽  
Author(s):  
Jie Fang Xing ◽  
Jie Zhang ◽  
Lu Jun He

Introduce some basic knowledge, methods and theory of using the finite element software ANSYS to carry out contact analysis, and then establish the contact simulation analysis finite element model for CTP imaging drum and plate by using the software ANSYS. A numerical simulation analysis on the imaging drum and the plate indicates that the analysis results are consistent with the experimental results, so as to lay the foundation for the reliability and stability of dynamic design and optimization design of CTP imaging drum.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Kexin Zhang

Steel tied arch bridge has been widely used in modern bridge construction due to its beautiful shape, high material utilization rate and overall structural stiffness. However, there are few cases in which the tied-arch bridge is constructed by incremental launching . Based on the steel tied arch bridge project, this paper uses finite element software to establish the finite element simulation analysis of the construction process, and monitors the construction process of the bridge. The test results show that it is in the most unfavorable state when the cantilever at the end of the bridge reaches the maximum. At this time, the stress at the 117 m position of the beam reaches the maximum, the stress at the top edge is 33.7 MPa, and the stress at the bottom edge is -58.2 MPa. The stress in other sections did not exceed 30 MPa, and the beam was under uniform stress. When the foot of the internal arch passes through the temporary pier, the supporting force of the pier is maximum, which is about 6000 kN. The reasonable range of α is between 0.55 and 0.65, which is the ratio between the length Ln of launching nose and the maximum span L of incremental launching .


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Haibin Huang ◽  
Peng Li ◽  
Chuang Wang ◽  
Bingxiang Yuan ◽  
Minjie Chen ◽  
...  

In order to study the vibration influence of tunnel drilling and blasting method on the built tunnel with small clear distance, taking the intersection of Zhuhai Dahengqinshan No. 1 tunnel and Zhuji urban rail tunnel as the engineering background, we used ABAQUS finite element software to conduct numerical simulation analysis on the influence of different blasting loads on existing tunnels with small clear distance in Zhuji tunnel construction. The following conclusions were drawn: the blasting construction of the tunnel under construction had the greatest impact on the vault of the existing tunnel; when the peak load was reduced by half, the stress value, vertical displacement, and resultant velocity of Mises were also reduced by half, which indicates that reducing the peak value of blasting load appropriately can ensure the safety of tunnel construction. When the peak load is 2.7 MPa, the measured and simulated values were less than the resultant velocity limit required by the specification. In addition, the relative error between the measured value and the simulated value was less than 5%, indicating the accuracy of the numerical simulation.


2014 ◽  
Vol 494-495 ◽  
pp. 1008-1011
Author(s):  
Guang Feng ◽  
Song Jian Sun

In the past, the semi-active control study generally is calculated based on the MATLAB numerical procedure, which cant achieve fine simulation. In this paper, to solve this problem, the finite element software ABAQUS is taken to be secondary development, a numerical simulation method of studying semi-active control is proposed. And the seismic response of a steel column is taken for the research. the numerical simulation analysis of the semi-active control is carried out. The results show that the control effect of the control method is significant, and the simulation result is clearly visible.


Sign in / Sign up

Export Citation Format

Share Document