The Effect of Different Tungsten-Containing Materials Addition on the Reinforcements in the Surface Compound Layer with Steel Substrate

2014 ◽  
Vol 651-653 ◽  
pp. 128-132
Author(s):  
Chang Qing Guo ◽  
Xiao Ping Liu

The effect of different tungsten-bearing materials addition in a surface preform, such as Ni-base WC particles, ferrotungsten powders and casting WC particles, on the reinforcement phases at the surface compound layer with a carbon steel substrate is investigated under the condition of vacuum expandable pattern casting V-EPC. The microstructures and reinforcement phases are characterized by optical microscopy, SEM and EDS. Experimental results show that it is impossible to synthesize the independent WC particles in each condition. The tungsten-containing materials are all inclined to decompose during steel infiltration and the released tungsten elements tend to combine with carbon to form fish born-like or strip-like WC or W2C carbides and dissolve in other type of carbides and matrix.

2014 ◽  
Vol 940 ◽  
pp. 3-6
Author(s):  
Chang Qing Guo

This paper introduces a process that combines a vacuum expandable pattern casting V-EPC with self-propagation high–temperature synthesis SHS of TiB2/TiC particles for fabricating the TiB2/TiC duplex particulates reinforced carbon steel matrix surface composite, and the effect of relative thickness δ on metallurgical quality and microstructures. FeTi-FeB-FeCr system with low cost is adopted as the SHS reactant. Experimental results show that with increasing δ, the surface composite is gradually formed and the metallurgical quality improved. The typical microstructures of the composite from surface to core are consisted of three different layers, i.e., the surface compound layer, the interim transitional layer and the carbon steel base. A certain amount of fineTiB2/TiC particles is distributed in the matrix of the surface compound layer.


2013 ◽  
Vol 575-576 ◽  
pp. 198-202
Author(s):  
Chang Qing Guo

This paper presents a novel fabrication process that combines SHS with V-EPC (vacuum expandable pattern casting) and microstructural features of TiB2+TiC duplex particulates reinforced surface composite with carbon steel matrix. Macro structural observation shows that the surface composite is dense and there are no obvious defects. Microstructural investigation demonstrates that the composite from surface to core is consisted of three different layers, i.e., the top surface compound layer, the interim transitional layer and the bottom carbon steel matrix. A large amount of fine TiB2 and TiC duplex particles are evenly distributed in the composite matrix, while the concentration are significantly decreased and non-uniform distribution increased for these particles in the interim layer.


2013 ◽  
Vol 631-632 ◽  
pp. 476-480
Author(s):  
Chang Qin Guo ◽  
Wen Hua Han

This paper presents a fabricating process and microstructural features of TiB2+TiC duplex particulates reinforced surface composite with carbon steel matrix. The effect of ferrous-titanium addition on microstructures is investigated and analyzed. The results showed that the surface compound layer do not exhibit at lower addition, but appear at higher addition. With increasing ferrous-titanium addition, the concentration and size of the synthesized particles at the surface compound layer are decreased, but the tendency of uniform distribution increased.


2014 ◽  
Vol 1052 ◽  
pp. 40-44 ◽  
Author(s):  
Chang Qing Guo ◽  
Xiao Yan Hua ◽  
Ji Wei Han

A process that combines a vacuum expandable pattern casting V-EPC with self-propagation high-temperature synthesis SHS of TiB2/TiC particles for the fabrication of the TiB2+TiC duplex particulates reinforced carbon steel matrix surface composite are introduced in this paper. The effect of ferrotitanium addition in the SHS reactants on the macro and micro structures as well as hardness is investigated. It has been found that with the increase of ferrotitanium addition, the concentration of synthesized particles in the layer gradually increases to maximum, then decreases. The hardness gradually decreases from the surface compound layer to core and the maximum hardness of 1682HV is obtained on the composite surface.


2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3535
Author(s):  
Naba Jasim Mohammed ◽  
Norinsan Kamil Othman ◽  
Mohamad Fariz Mohamad Taib ◽  
Mohd Hazrie Samat ◽  
Solhan Yahya

Extracts from plant materials have great potential as alternatives to inorganic corrosion inhibitors, which typically have harmful consequences. Experimental and theoretical methodologies studied the effectiveness of agricultural waste, namely, date palm seed extract as a green anti-corrosive agent in 0.5 M hydrochloric acid. Experimental results showed that immersion time and temperature are closely related to the effectivity of date palm seed as a corrosion inhibitor. The inhibition efficiency reduced from 95% to 91% at 1400 ppm when the immersion time was increased from 72 h to 168 h. The experimental results also indicated that the inhibition efficiency decreased as the temperature increased. The presence of a protective layer of organic matter was corroborated by scanning electron microscopy. The adsorption studies indicated that date palm seed obeyed Langmuir adsorption isotherm on the carbon steel surface, and Gibbs free energy values were in the range of −33.45 to −38.41 kJ·mol−1. These results suggested that the date palm seed molecules interacted with the carbon steel surface through mixture adsorption. Theoretical calculations using density functional theory showed that the capability to donate and accept electrons between the alloy surface and the date palm seed inhibitor molecules is critical for adsorption effectiveness. The HOMO and LUMO result indicated that the carboxyl (COOH) group and C=C bond were the most active sites for the electron donation-acceptance type of interaction and most auxiliary to the adsorption process over the Fe surface.


2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


2012 ◽  
Vol 57 (4) ◽  
pp. 1201-1210 ◽  
Author(s):  
M. Prażmowski ◽  
H. Paul

This study focuses on the effect of the stand-off distance between the bonded plates on the properties of zirconium (Zr700) - steel (P355NL2) bimetal produced by explosion welding. Bonding trials were carried out in parallel arrangement at constant detonation velocity. The analyses of microstructural transformations occurring in the bond zone and mechanical properties of the clad were performed for as-bonded welds, i.e. immediately following explosion welding. A general description of the obtained welds was made (height and length of the wave was determined) and the quantitative fraction of the melt zones was calculated along the bond’s length. Using optical microscopy and scanning electron microscopy (SEM) enabled the assessment of the quality of the formed bonds, initial identification of phases and quantitative analysis of the individual phases on the longitudinal section. The microhardness results were used in the analysis of hardening changes at the interface area. The completed research proves the potential to obtain a proper bond for zirconium/carbon steel sheets. A strong effect of the stand-off distance on the strength properties of the fabricated plates was observed, and the ’direction’ of these transformations was pointed out. Optical microscopy and SEM examinations allowed determining the characteristic of the bond interface for diverse stand-off distances. It was established that increasing the stand-off distance between the plates causes the reduction of the melt area along the length of the bond, which improves strength properties of the bimetal. The analysis of the strength distribution performed based on the microhardness measurements showed that the changes occur within the distances up to 500µm from the bond interface and the highest hardening, for both zirconium and steel, is directly at the interface and then successively decreases.


Sign in / Sign up

Export Citation Format

Share Document