The Simulation Research of Dynamic Flow Based on the Bypass Method

2014 ◽  
Vol 651-653 ◽  
pp. 976-979
Author(s):  
Jun Zhang ◽  
Xue Xue Wang ◽  
Hong Mei Tang ◽  
Bang Zeng Guo ◽  
Xian Hua Li

The flow rate in high pressure hydraulic system is greatly affected when flow meter is inserted in the system. A method was proposed that was by measuring the lateral pipe flow instead of directly measuring system of main flow. According to this method, simulation model was set up based on software. And the influence of the flow distribution relationship between main and side oil-way by the change of relief valve. Theoretical studies show that the measurement method is feasible.

2013 ◽  
Vol 753-755 ◽  
pp. 2757-2760
Author(s):  
Jing Yan

Modular modeling methods based on the reasonable simplifying and supposing of hydraulic system of demolishing robots are proposed in this paper, dynamic mathematical model of each hydraulic element of demolishing robots is set up by the dynamic system analysis software package Simulink of Matlab, response characteristic curve is obtained by the simulation, and analysis of the simulation results is operated in this paper. The experimental results explicate that the hydraulic system is stably, real-time, low-cost, and easy to expand; it can meet the applying requirements of demolishing robots, and it provides the theory basis for the project applying of the hydraulic system of demolishing robots.


2012 ◽  
Vol 468-471 ◽  
pp. 980-983
Author(s):  
Ye Mu Wang ◽  
Jie Wang

This paper introduces the closed loop pressure computer control system which is suitable for the environment of kerosene medium. The system can satisfy the technical requirements of the pressure regulation in the test of the single –jet nozzle of aero engine , the pressure can be accurately controlled and its control precision is within ±0.01MPa. It indicates the principle and composition of the hydraulic system and computer measurement and control system. The paper introduces the design method and treatment process of the key technology, which includes the use of a proportional relief valve and a fixed throttle hole in hydraulic system, the use of PID control in closed loop control system, the use of high precision sensor and measurement method by grade in measuring system and the use of 24V precision steady voltage source. In the same time it indicates the actual application of the closed loop pressure control system.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 116
Author(s):  
Julian Deuerling ◽  
Shaun Keck ◽  
Inasya Moelyadi ◽  
Jens-Uwe Repke ◽  
Matthias Rädle

This work presents a novel method for the non-invasive, in-line monitoring of mixing processes in microchannels using the Raman photometric technique. The measuring set-up distinguishes itself from other works in this field by utilizing recent state-of-the-art customized photon multiplier (CPM) detectors, bypassing the use of a spectrometer. This addresses the limiting factor of integration times by achieving measuring rates of 10 ms. The method was validated using the ternary system of toluene–water–acetone. The optical measuring system consists of two functional units: the coaxial Raman probe optimized for excitation at a laser wavelength of 532 nm and the photometric detector centered around the CPMs. The spot size of the focused laser is a defining factor of the spatial resolution of the set-up. The depth of focus is measured at approx. 85 µm with a spot size of approx. 45 µm, while still maintaining a relatively high numerical aperture of 0.42, the latter of which is also critical for coaxial detection of inelastically scattered photons. The working distance in this set-up is 20 mm. The microchannel is a T-junction mixer with a square cross section of 500 by 500 µm, a hydraulic diameter of 500 µm and 70 mm channel length. The extraction of acetone from toluene into water is tracked at an initial concentration of 25% as a function of flow rate and accordingly residence time. The investigated flow rates ranged from 0.1 mL/min to 0.006 mL/min. The residence times from the T-junction to the measuring point varies from 1.5 to 25 s. At 0.006 mL/min a constant acetone concentration of approx. 12.6% was measured, indicating that the mixing process reached the equilibrium of the system at approx. 12.5%. For prototype benchmarking, comparative measurements were carried out with a commercially available Raman spectrometer (RXN1, Kaiser Optical Systems, Ann Arbor, MI, USA). Count rates of the spectrophotometer surpassed those of the spectrometer by at least one order of magnitude at identical target concentrations and optical power output. The experimental data demonstrate the suitability and potential of the new measuring system to detect locally and time-resolved concentration profiles in moving fluids while avoiding external influence.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Hyunjun Kim ◽  
Sanghyun Kim ◽  
Youngman Kim ◽  
Jonghwan Kim

A direct spring loaded pressure relief valve (DSLPRV) is an efficient hydraulic structure used to control a potential water hammer in pipeline systems. The optimization of a DSLPRV was explored to consider the instability issue of a valve disk and the surge control for a pipeline system. A surge analysis scheme, named the method of characteristics, was implemented into a multiple-objective genetic algorithm to determine the adjustable factors in the operation of the DSLPRV. The forward transient analysis and multi-objective optimization of adjustable factors, such as the spring constant, degree of precompression, and disk mass, showed substantial relaxation in the surge pressure and oscillation of valve disk in a hypothetical pipeline system. The results of the regression analysis of surge were compared with the optimization results to demonstrate the potential of the developed method to substantially reduce computational costs.


1968 ◽  
Author(s):  
Gary L. Goodenow ◽  
Thomas R. Kolhoff ◽  
Fraser D. Smithson

Author(s):  
Steffen Schirrmeister

Pilot-scale micro-process technology for heterogeneously catalyzed gas phase reactions is generally highly demanding towards the methods of catalyst coating, flow distribution, reactor manufacturing and assembly, safety issues and other factors. Yet, first cost analysis have shown that economical processes can be developed using micro-technology. For this matter, it is necessary to improve and simplify the laboratory set-up, meaning that the stacked architectures at the meter-scale must be brought down to the micron-scale. This in return calls for specific methods of catalyst coating and a particularly precise assembly of the operation unit.


2014 ◽  
Vol 89 (4) ◽  
pp. 442-455
Author(s):  
R. Zanino ◽  
R. Bonifetto ◽  
F. Cau ◽  
A. Portone ◽  
L. Savoldi Richard

2011 ◽  
Vol 211-212 ◽  
pp. 240-245
Author(s):  
Lian Sheng Wang ◽  
Quan Yang ◽  
An Rui He ◽  
Tian Wu Liu ◽  
De Fu Guo ◽  
...  

Mill is always weighed by its longitudinal stiffness. The prediction precision of longitudinal stiffness related strip geometric accuracy. Taking 1700mm hot strip line as research object, stiffness of housing, bearing wall and roll was calculated by finite elements method(FEM), hydraulic system stiffness was obtained by theoretical formula. Analyzing vertical system and structural symmetry of mill, functional relationship between longitudinal stiffness and its components stiffness was derived according to series or parallel connection with various components. Longitudinal stiffness was the basis on thickness set-up model. Calculation result was verified by practical test.


2019 ◽  
Vol 18 ◽  
pp. 155
Author(s):  
G. Eleftheriou ◽  
C. Tsabaris ◽  
D. L. Patiris ◽  
E. Androulakaki ◽  
M. Kokkoris ◽  
...  

The evaluation of time period that meteoric water remains in the ground (residence time) before exiting in the open sea can be a valuable information for the submarine groundwater discharges (SGD) in the costal zones. Coastal waters contain elevated dissolved activities of radium isotopes compared to the open ocean, where excess activities are zero. Lately it has been shown by Moore et al., that residence time can be estimated by a model based on radium radioisotopes ratio reduction throughout the coast. However the standard methods for the estimation of radium isotopes concentration in the water are sophisticated, time consuming or require big amount of sample. Hereby, a method based on the direct gamma ray spectrometry of untreated water samples from coastal areas is applied to determine the residence time of the SGD. Efficiency calibration of the spectrometry set up has been performed for two different volumetric sample geometries, using 152Eu/154Eu solution as reference source. In order to ensure the reliability of the method, the background courting rate magnitude and variance through time have been defined for the radioisotopes of interest. Additionally, the minimum detectible activity (MDA) of the measuring system was determined, in Becquerel per cubic meter, as a function of energy in water samples. The developed method was applied and validated for water samples from the submarine spring in Stoupa Bay, southwestern Peloponnesus. The defined residence time varies from 3 to 6 days, being in good agreement with the results of the standard geological pigment-tracer method.


Author(s):  
Y. Zhu ◽  
H. Yamada ◽  
S. Hayashi

A diode-laser absorption system having the potential of simultaneous determination of NO and NO2 concentrations in the exhaust jets from gas turbines has been being developed. The sensitivities of the detection units at a typical exhaust gas temperature of 800 K were estimated as 30 ppmv-m and 3.7 ppmv-m for NO and NO2, respectively. Experiments using simulated exhaust gas flows have shown that CO2 do not have any interference with the NO and NO2 measurements. The detection limits in ppm of the system were considerably lowered by using a multi-pass optical system. A pair of off-axis parabola mirrors was useful to prevent the laser beam from straying from the detection area of the sensor due to the beam steering in the exhaust gas. Furthermore, the multi-path optical duct fabricated with 14 mirrors on the inner wall was effective in the measurement of NO and NO2 in the exhaust gas from gas turbines.


Sign in / Sign up

Export Citation Format

Share Document