SS-BMUSIC Algorithm for Space-Time 2D Signal Model

2014 ◽  
Vol 654 ◽  
pp. 346-351 ◽  
Author(s):  
Yang Jun ◽  
Qi Feng

This paper presents a beamforming matrix with spatial smoothing effect, and extends it to the space-time 2D signal model, which not only reduces the computational complexity of the space-time 2D MUSIC algorithm and improves the coherence resolution capacity, simulation results show that this algorithm has better performance and effectiveness than MUSIC itself.

2014 ◽  
Vol 610 ◽  
pp. 339-344
Author(s):  
Qiang Guo ◽  
Yun Fei An

A UCA-Root-MUSIC algorithm for direction-of-arrival (DOA) estimation is proposed in this paper which is based on UCA-RB-MUSIC [1]. The method utilizes not only a unitary transformation matrix different from UCA-RB-MUSIC but also the multi-stage Wiener filter (MSWF) to estimate the signal subspace and the number of sources, so that the new method has lower computational complexity and is more conducive to the real-time implementation. The computer simulation results demonstrate the improvement with the proposed method.


2014 ◽  
Vol 530-531 ◽  
pp. 530-533
Author(s):  
Jin Fang Cheng ◽  
Chao Ran Zhang ◽  
Wei Zhang

The MUSIC algorithm cannot deal with the problem of DOA estimation of coherent sources, this paper proposes the USTC (unitary spatio-temporal correlation matrices)-MUSIC algorithm using single vector hydrophone to solve this problem, by utilizing the unitary spatio-temporal correlation matrix instead of the covariance matrix. The simulation results demonstrate that the USTC-MUSIC algorithm has a better ability to distinguish the coherent sources from different directions than the spatial smoothing MUSIC algorithm.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1488
Author(s):  
Kang Zhao ◽  
Zhiwen Liu ◽  
Shuli Shi ◽  
Yulin Huang ◽  
Yougen Xu

A random Nyström (R-Nyström) scheme for clutter subspace estimation is proposed in the context of polarimetric space-time adaptive processing (pSTAP). Unlike the standard Nyström scheme making use of only partial columns of the clutter plus noise covariance matrix (CNCM), R-Nyström exploits full CNCM information with a properly designed selection procedure under the newly developed random ridge cross leverage score (RRCLS) criterion. With R-Nyström, sup-ported by the complete CNCM columns, upgraded clutter subspace estimation can be achieved at the expense of an insignificant increase in computational complexity, in contrast to the standard Nyström. The R-Nyström-based pSTAP, termed pR-Nyström, is shown to be superior over the current eigendecomposition-free subspace pSTAP in the signal to clutter plus noise loss and computational complexity. The efficacy of R-Nyström/pR-Nyström is validated by the simulation results.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lin Li ◽  
Fangfang Chen ◽  
Jisheng Dai

A novel MUSIC-type algorithm is derived in this paper for the direction of departure (DOD) and direction of arrival (DOA) estimation in a bistatic MIMO radar. Through rearranging the received signal matrix, we illustrate that the DOD and the DOA can be separately estimated. Compared with conventional MUSIC-type algorithms, the proposed separate MUSIC algorithm can avoid the interference between DOD and DOA estimations effectively. Therefore, it is expected to give a better angle estimation performance and have a much lower computational complexity. Meanwhile, we demonstrate that our method is also effective for coherent targets in MIMO radar. Simulation results verify the efficiency of the proposed method, particularly when the signal-to-noise ratio (SNR) is low and/or the number of snapshots is small.


2019 ◽  
Vol 1284 ◽  
pp. 012051
Author(s):  
B Yang ◽  
B Yang ◽  
C Wang ◽  
H X Shen

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haiwen Li ◽  
Nae Zheng ◽  
Xiyu Song ◽  
Yinghua Tian

The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA) and direction of arrival (DOA) parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC) algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM) system, and the Cramer-Rao bound (CRB) is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm and 2D matrix pencil (MP) algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.


Author(s):  
A.A. Reznev ◽  
V.B. Kreyndelin

The application of optimality criteria for the study of space-time codes is considered. Known rank and determinant criteria are described. The computational complexity of determinant criteria is presented taking into account some estimation of the real CPUs specifications. An algorithm for calculating a new optimality criterion is described. The computational complexity of the new optimality criterion is evaluated. The new criterion is applied to the study of the space-time Golden matrix. The obtained criterion value is used to modify the Golden code. The modeling for Golden code demonstrates that criterion works and gives us better levels for noise immunity. The proposed optimality criterion is acceptable in terms of computational complexity even for a large number of antennas, which is typical for large-scale MIMO systems. Рассматривается применение критериев оптимальности для исследования пространственно-временных кодов.Описаны известные ранговый и детерминантный критерии. Для детерминантного критерия оценена вычислительная сложность с учетом определения специальных высокопроизводительных процессоров. Описан алгоритм расчета нового критерия оптимальности. Проведена оценка вычислительной сложности нового критерия оптимальности. Новый критерий применен для исследования пространственно-временной матрицы Голден. Полученное значение критерия использовано для модификациикода Голден. Продемонстрированы кривые помехоустойчивости для кода Голден и кода Голден с модифицированным параметром, получен энергетический выигрыш. Предложенный критерий оптимальности приемлем с точки зрения вычислительнойсложности даже при большом числе антенн, характерном для систем широкомасштабного MIMO.


Author(s):  
Faten Mashta ◽  
Mohieddin Wainakh ◽  
Wissam Altabban

Spectrum sensing in cognitive radio has difficult and complex requirements such as requiring speed and sensing accuracy at very low SNRs. In this paper, the authors propose a novel fully blind sequential multistage spectrum sensing detector to overcome the limitations of single stage detector and make use of the advantages of each detector in each stage. In first stage, energy detection is used because of its simplicity. However, its performance decreases at low SNRs. In second and third stage, the maximum eigenvalues detector is adopted with different smoothing factor in each stage. Maximum eigenvalues detection technique provide good detection performance at low SNRs, but it requires a high computational complexity. In this technique, the probability of detection improves as the smoothing factor raises at the expense of increasing the computational complexity. The simulation results illustrate that the proposed detector has better sensing accuracy than the three individual detectors and a computational complexity lies in between the three individual complexities.


2011 ◽  
Vol 59 (4) ◽  
pp. 936-941 ◽  
Author(s):  
Ender Ayanoglu ◽  
Erik G. Larsson ◽  
Eleftherios Karipidis

Sign in / Sign up

Export Citation Format

Share Document