Artificial Intelligence Model for the Prediction of Cut Quality in Abrasive Water Jet Cutting

2014 ◽  
Vol 657 ◽  
pp. 206-210 ◽  
Author(s):  
Miloš Madić ◽  
Predrag Janković ◽  
Laurenţiu Slătineanu ◽  
Miroslav Radovanović

In abrasive water jet cutting, the cut quality is of great importance. In this paper, artificial intelligence model was developed for the prediction of cut quality in abrasive water jet cutting of aluminum alloy. To this aim, artificial neural network (ANN) model was developed in terms of workpiece material thickness, traverse rate and abrasive flow rate. Three-layered feedforward ANN model having four hidden neurons trained with backpropagation algorithm with momentum was used for modeling purposes. The mathematical model showed high prediction accuracy with average absolute percentage error of about 3 %. Using the developed ANN model, 3-D graphs, showing the interaction effects of the traverse rate and abrasive flow rate for three different thicknesses, were given. It was showed that ANNs may be used as a good alternative in analyzing the effects of abrasive water jet cutting parameters on the cut quality characteristics.

2014 ◽  
Vol 77 (1-4) ◽  
pp. 763-774 ◽  
Author(s):  
Pavol Hreha ◽  
Agáta Radvanská ◽  
Sergej Hloch ◽  
Vincent Peržel ◽  
Grzegorz Królczyk ◽  
...  

2015 ◽  
Vol 809-810 ◽  
pp. 201-206
Author(s):  
Predrag Janković ◽  
Miroslav Radovanović ◽  
Oana Dodun ◽  
Miloš Madić ◽  
Dušan Petković

Abrasive water jet machining is frequently used in industry. It is one of the most versatile processes in the world. The basic advantages of abrasive water jet machining is that no heat affected zones or mechanical stresses are left on an abrasive water jet cut surface, high flexibility and small cutting forces. Although this cutting technology includes many advantages, there are some drawbacks. For instance, abrasive water jet cutting can produce tapered edges on the kerf of workpiece being cut. This can limit the potential applications of abrasive water jet cutting, if further machining of the edges is needed to achieve the engineering tolerance required for the part. The machining parameters have a great influence on these phenomena. The aim of this paper is to investigate the cut quality of EN AW-6060 aluminium alloy sheets under abrasive water jets. The experimental results indicate that the feed rate (nozzle traverse speed) of the jet is a significant parameter on the surface morphology.


2014 ◽  
Vol 513-517 ◽  
pp. 218-222
Author(s):  
Zheng Long Zou ◽  
Xiong Duan ◽  
Chu Wen Guo

Combining with the electron microscope analysis of the morphology of incision, the mechanism of abrasive water jet cutting metal materials was carried out to explore, for the rational selection of abrasive jet cutting parameters, to extend its application to provide the basis. Study shows that the abrasive water jet cutting metal materials, the material damage mechanism is mainly to yield deformation and failure and shear of grinding damage, grooving formation is mainly caused by falling impact deformation and furrows grinding.


2014 ◽  
Vol 1029 ◽  
pp. 176-181 ◽  
Author(s):  
Ion Aurel Perianu ◽  
Ion Mitelea ◽  
Viorel Aurel Şerban

In this paper research elements regarding the effect of water pressure variation on cut surfaces quality are presented in the field of abrasive water jet cutting of materials hard to process by machining such as austenitic stainless steels, in this case with a thickness of 20 mm. Selection of the optimal cutting process based on technical and economic criteria takes into consideration the type and thickness of the targeted material and also the physical and geometrical quality requirements. The present paper contains experimental research results regarding abrasive water jet cutting of austenitic stainless steel EN 1.4306 (ASTM 304 L) at different values of water pressure. The abrasive material used is Garnet with particle granulation 80 Mesh. By making roughness measurements and hardness examinations of the cut surface an evaluation will be made of the surface quality defining the optimal pressure values.


Sign in / Sign up

Export Citation Format

Share Document