Combustion Characteristic of a Diesel Engine Operating with Methanol as Alternative Fuel

2014 ◽  
Vol 660 ◽  
pp. 452-456 ◽  
Author(s):  
Akasyah M. Kathri ◽  
Rizalman Mamat ◽  
Amir Aziz ◽  
Azri Alias ◽  
Nik Rosli Abdullah

Modelling the compression ignition engine mostly depends on fuel characteristics. The proses involve a model of the real system and carry out experiment as a mean of comparison to understand the behaviour of the system. The diesel engine nowadays operated with different kind of alternative fuels such as natural gas and biofuel. The aim of this article is to study the combustion characteristic occurred in an engine cylinder of a diesel engine when using biofuel. The one-dimensional numerical analysis using GT-Power software is used to simulate the diesel engine. The engine operated at full engine load and difference speed. The methanol fuel used in the simulation is derived from the conventional methanol fuel properties. The analysis of simulations includes the cylinder pressure, combustion temperature and rate of heat release. The simulation result shows that in-cylinder pressure for methanol is slightly higher than diesel fuel in any speed of the engine. It also found that the combustion characteristic on methanol temperature is higher at all crank angle degree of diesel fuel. Mass fraction burns of methanol are much lower than diesel fuel, but burns faster than diesel fuel.

2014 ◽  
Vol 660 ◽  
pp. 447-451
Author(s):  
Akasyah M. Kathri ◽  
Rizalman Mamat ◽  
Amir Aziz ◽  
Azri Alias ◽  
Nik Rosli Abdullah

The diesel engine is one of the most important engines for road vehicles. The engine nowadays operates with different kinds of alternative fuels, such as natural gas and biofuel. The aim of this article is to study the combustion process that occurs in an engine cylinder of a diesel engine when using biofuel. The one-dimensional numerical analysis using GT-Power software is used to simulate the commercial four-cylinder diesel engine. The engine operated at high engine load and speed. The ethanol fuel used in the simulation is derived from the conventional ethanol fuel properties. The analysis of simulations includes the cylinder pressure, combustion temperature and rate of heat release. The simulation results show that in-cylinder pressure and temperature for ethanol is higher than for diesel at any engine speed. However, the mass fraction of ethanol burned is similar to that of diesel. MFB only affects the engine speed.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7903
Author(s):  
István Péter Kondor ◽  
Máté Zöldy ◽  
Dénes Mihály

Due to the world’s growing population, the size of areas intended for food production in many countries of the world can only be achieved through severe environmental damage and deforestation, which has many other detrimental consequences in addition to accelerating global warming. By replacing the bio-content of fuels with other alternative fuels, land that is used for energy crops can also be used to grow food, thus mitigating the damaging effects of deforestation. Waste-based tire pyrolysis oil (TPO) can be a promising solution to replace the bio-proportion of diesel fuel. Since it is made from waste tires, it is also an optimal solution for recycling waste. This research shows the effect of different low-volume-percent tire pyrolyzed oil blended with diesel on the performance, fuel consumption, and emissions on a Mitsubishi S4S-DT industrial diesel engine. Four different premixed ratios of TPO were investigated (2.5%, 5%, 7.5% and 10%) as well as pyrolysis oil and 100% diesel oil; however, the following studies will only include the data from the pure diesel and the 10% TPO measurements. The experimental investigations were in an AVL electric dynamometer, the soot measurements were in an AVL (Anstalt für Verbrennungskraftmaschinen List) Micro soot sensor (MSS), and the emission measurements were in a AVL Furier-transform infrared spectroscopy (FTIR) taken. The scope of research was to investigate the effect of low volume percentage TPO on performance and emissions on a light-duty diesel engine.


Author(s):  
Rajendra Pawar ◽  
◽  
Sharad Patil ◽  
Kamalesh Jagadale ◽  
Pranali Gujar ◽  
...  

Substantial growth in emissions, hike in fuel prices, and exhaustion of fossil fuels has given rise to the need for substitute fuels for diesel engines, which are renewable and demote the emission. Also, strict international emission standards force researchers to seek alternative fuels. Vegetable oils are promising alternative biodiesel for a diesel engine, amongst them, rice bran is underutilized, a non-edible source that doesn’t create any food security hurdle. The paper focused to investigate the performance, combustion, emission, and vibration characteristics of diesel engine fuelled with rice bran biodiesel and n- butanol additive (5% constant) at CR 17.5. The engine characteristics of seven biodiesel blends (B5n5, B10n5, B15n5, B20n5, B25n5, B30n5, and B40n5) were measured at various loads under constant speed and compared with diesel fuel. The performance characteristics were observed in moderate quantities as compared to diesel whereas the emissions were found reduced drastically than diesel fuel except for nitric oxides (NOx) emissions. The measured engine cylinder vibration for all blends indicates similar results as diesel fuel hence leads to smooth combustion. The investigation shows that blends from B20n5 to B30n5 have the potential to be used in a diesel engine without any modification.


Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Ahmad Fitri Yusop ◽  
Muhammad Zaki ◽  
Rizalman Mamat ◽  
...  

Energy demand from the community, which continues to increase has resulted in depletion of petroleum (fossil) energy in recent years. Many researchers have sought to find alternative fuels to replace dependence on conventional energy. The mixing of alcohol into diesel fuel has also been carried out by several previous researchers. The main focus of this research is to investigate the combustion performance of diesel engines using a mixture of biodiesel-butanol-water and diesel (B5Bu5W5). This research experiment used a single-cylinder diesel engine with different speeds at 25% and 50% engine load. The experimental results show that the maximum cylinder pressure reaches 72.32 bar when the engine load reaches 50%. While at 25% engine load press the maximum cylinder 33.62 bar. The heat dissipation for 50% engine load is also higher than the engine load 25% respectively 34.39% and 33.62%. Overall results show that cylinder pressure increases when the load and engine speed increase. However, the combustion time is a little slower than when using pure diesel fuel.


2019 ◽  
Vol 8 (4) ◽  
pp. 6045-6049

Diesel engines are principally employed in industries, transportation and agricultural fields because of their high efficiency and reliability. However, too much of smoke and nitric oxide emissions is one of the drawbacks. To regulate pollution and other negative effects of diesel engines, alternative fuels have come into existence. Ethanol produced from sugarcane in the biomass process is a recent example of it, due to its high octane number. But using raw ethanol is not a quality fuel for a solid ignition engine. It can be converted through a dehydration process to produce Diethyl Ether (DEE), which is an excellent compression-ignition fuel with a higher energy level than ethanol. DEE having a starting problem can’t be used directly in large amounts in diesel engines, but using it in small amounts is an advantage. This paper highlights the performance of blended pyrolysis oil with diesel fuel in the combination of DEE used in a mono cylinder four-stroke diesel engine. The pyrolysis process was used to extract the pyro oil from the Mosambi peel biomass. The oil has been extracted from Mosambi peel at the reaction temperature of 750˚C, in other words, the fast pyrolysis process. The study was conducted on composition of MDEE5 (5%MPPO+5%DEE+90D),MDEE10(10%MPPO+5%DEE+85% D) and MDEE15 (15% MPPO + 5%DEE + 80% D). Characteristics of the above combinations, MDEE5, MDEE10, and MDEE15 were analyzed and the properties like viscosity, density, flashpoint, fire point FTIR analysis of oils are also recorded. The blending of pyrolysis oil and DEE are mixed with diesel fuel with its volume. All the blended fuels were tested at 1500 rpm single-cylinder diesel engine. The maximum power output of brake thermal efficiency was recorded as 31.5% with MDEE5 as it was 30.0% with BD. The emission of smoke and NOx were considerably reduced


2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


Author(s):  
Yuanjiang Pei ◽  
Marco Mehl ◽  
Wei Liu ◽  
Tianfeng Lu ◽  
William J. Pitz ◽  
...  

A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition (CI) engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multicomponent mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine (RCM) and shock tube (ST), speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in STs and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11,754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the engine combustion network (ECN) website. These multidimensional simulations were performed using a representative interactive flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regard to the predictions of ignition delay and lift-off length at different ambient temperatures.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Sign in / Sign up

Export Citation Format

Share Document