Recycling of Waste Toner and its Electrochemical Performances for Supercapacitor

2014 ◽  
Vol 675-677 ◽  
pp. 689-692
Author(s):  
Ji Qing Mao ◽  
Yang Li

Utilization of the waste toner in wasted print cartridge was beneficial to the environmental protection and resource recycling. Fe3O4 has been obtained from the waste toner via magnetic separation and heat-treatment in present study. XRD measurement revealed the recuperated sample has ferriferrous oxide structure without other crystalline impurity. The electrochemical performances of recuperated Fe3O4, as the electrode active material for supercapacitor, was conducted by cyclic voltammetry and charge-discharge process. The results showed that the specific capacitance of Fe3O4 achieved 76.5 F/g under 50 mA/g current density, which possessed typical capacitive behaviors and good cycling stabilities. Based on the preferable electrochemical performances, Fe3O4 recovered from waste toner may be a potential alternative as electrode material for supercapacitor.

2011 ◽  
Vol 236-238 ◽  
pp. 868-871 ◽  
Author(s):  
Meng Liang Tong ◽  
Xuan Yan Liu

Calcium zincate as an active material in Zn/Ni secondary battery has been successfully synthesized by microwave method. The chemical composition of Ca(OH)2·2Zn(OH)2·2H2O was confirmed by X-ray powder diffraction pattern and weight loss in thermogravimetric analysis.The results of cyclic voltammetry and experimental Zn/Ni battery charge–discharge test showed that the material of calcium zincate had excellent electrochemical performances: a high discharging platform of 1.685 V and a good cycleability, discharge capacity would be 70.0% of initial capacity after circulated 120 times.


2014 ◽  
Vol 953-954 ◽  
pp. 1040-1044
Author(s):  
Yang Li ◽  
Jing Li ◽  
Hua Qing Xie

α-MnO2nanowire was prepared by hydrothermal method. The structure of as-prepared manganese oxide demonstrated tetragonal crystalline in X-ray diffraction pattern. Scan electron microscopy (SEM) and Transmission electron microscopy (TEM) revealed the nanowire morphology of as-prepared α-MnO2. The band gap of α-MnO2was estimated at about 2.06 eV via UV-vis spectrum. As the electrode active material for supercapacitor, the electrochemical specific capacitance of α-MnO2nanowire achieved 156.5 F/g, which possessed typical capacitive behaviors and good cycling stabilities. Based on the preferable electrochemical performances, as-synthesized α-MnO2nanowire may be a potential alternative as electrode material for supercapacitor.


2017 ◽  
Vol 727 ◽  
pp. 698-704 ◽  
Author(s):  
Xian Wei Wang ◽  
Xiao Er Wang ◽  
Hui Chao Zhang ◽  
Qian Qian Zhu ◽  
Dong Li Zheng ◽  
...  

The structural and electrochemical properties of lanthanum manganate (LaMnO3) powder prepared by the sol-gel method are researched in this article. The powder calcined at 600 °C showed amorphous, and the powder calcined at 700-800 °C showed the pure phase of the LaMnO3. The grains with the size of about 80-120 nm were agglomerating together. Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical properties in alkaline environment. The electrochemical properties calcined at 700 °C showed a specific capacitance of 73 F/g at the current density of 0.5 A/g. The raw materials for preparing the LaMnO3 powder are cheap, and the operation method is simple.


2020 ◽  
Vol 8 (6) ◽  
pp. 5499-5503

Two-dimensional materials have attracted growing interest in research because of their specific electronic, physical, optical and mechanical properties. Molybdenum disulfide was theoretically investigated as novel energy storage materials because of its unusual physicochemical properties. This paper describes easy approach to fabricate molybdenum disulfide (MoS2 ) electrode using slurry technique on conducting substrate namely Ni foam as current collector for supercapacitor device application. This MoS2 electrode exhibits relatively good specific gravimetric capacitance, (Csp) of 11.12 to 12.38 Fg -1 at 1 mVs -1 scan rate. Moreover, galvanostatic charge-discharge displays symmetrical triangular curves which attributed to the fast charge-discharge process (in seconds). These results show that MoS2 active material can be charged and discharged reversibly between 0.2 and 1.0 V (in 6 M KOH) and between 0.3 and 1.0 V (in 0.5 M Na2SO4 ). From cyclic stability test exhibits capacitance retention of up to 83% and 64% after 1000 cycles in 6 M KOH and 0.5 M Na2SO4 , respectively. The MoS2 electrode is thus a promising material for future application of the supercapacitor.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiale Sun ◽  
Ya Wang ◽  
Yanfei Zhang ◽  
Chunju Xu ◽  
Huiyu Chen

Abstract Novel Co3O4 quasi-cubes with layered structure were obtained via two-step synthetic procedures. The precursors were initially prepared via hydrothermal reaction in the presence of egg albumin, and then the precursors were directly annealed at 300 °C in air to be converted into pure Co3O4 powders. It was found that the size and morphology of final Co3O4 products were greatly influenced by the amount of egg albumin and hydrothermal durations, respectively. Such layered Co3O4 cubes possessed a mesoporous nature with a mean pore size of 5.58 nm and total specific surface area of 80.3 m2/g. A three-electrode system and 2 M of KOH aqueous electrolyte were employed to evaluate the electrochemical properties of these Co3O4 cubes. The results indicated that a specific capacitance of 754 F g−1 at 1 A g−1 was achieved. In addition, the Co3O4 cubes-modified electrode exhibited an excellent rate performance of 77% at 10 A g−1 and superior cycling durability with 86.7% capacitance retention during 4000 repeated charge-discharge process at 5 A g−1. Such high electrochemical performances suggest that these mesoporous Co3O4 quasi-cubes can serve as an important electrode material for the next-generation advanced supercapacitors in the future.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950064 ◽  
Author(s):  
P. Anandhi ◽  
V. Jawahar Senthil Kumar ◽  
S. Harikrishnan

This paper investigates the synthesis and enhanced electrochemical behaviors of ZnO and NiO/ZnO nanocomposites for electrode material of supercapacitors. ZnO and NiO/ZnO nanocomposites were produced via sol–gel technique. Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) were used to determine the size and structure of as-synthesized nanomaterials, respectively. The capacitive behavior and charge–discharge characteristics of the electrode using ZnO and NiO/ZnO nanocomposites (as active material) were individually probed with the help of cyclic voltammetry (CV) and galvanostatic charge-discharge tests, respectively. The specific capacitance of nanocomposites-based electrode calculated from galvanostatic charge-discharge tests was 469[Formula: see text]F [Formula: see text] at the scan rate of 1[Formula: see text]mA [Formula: see text] in 1M Na2SO4 electrolyte. The power density and energy density at the current density of 1[Formula: see text]mA [Formula: see text] were determined as 1458.33[Formula: see text]W [Formula: see text] and 91.14[Formula: see text]Wh[Formula: see text][Formula: see text], respectively. Hence, NiO/ZnO nanocomposites could be reckoned to be a promising electrode material for supercapacitor while comparing to ZnO-based electrode material.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3509 ◽  
Author(s):  
Xinyu Lei ◽  
Mu Li ◽  
Min Lu ◽  
Xiaohui Guan

A new carbon-coated nickel sulfides electrode material (NST/CNTs@C) has been synthesized through an easy-to-operate process: NiS2/CNTs which was prepared by a hydrothermal method reacted with BTC (1,3,5-benzenetricarboxylic acid) under the condition of water bath heating to obtain the precursor, and then the precursor was calcined in 450 °C under a nitrogen atmosphere to obtain NST/CNTs@C. The electrochemical performance of NST/CNTs@C has been greatly improved because the formation of a carbon-coated layer effectively increased the specific surface area, reduced the charge transport resistance and inhibited the morphological change of nickel sulfides in the charge–discharge process. Compared with pure NiS2 and NiS2/CNTs, NST/CNTs@C presented great specific capacitance (620 F·g−1 at a current density of 1 A·g−1), better cycle stability (49.19% capacitance retention after 1000 cycles) and more superior rate capability (when the current density was raised to 10 A·g−1 the specific capacitance remained 275 F·g−1).


2015 ◽  
Vol 1740 ◽  
Author(s):  
Koshin Takemoto ◽  
Hirotoshi Yamada

ABSTRACTElectrochemical performances of a prototype Lithium-Bromine battery (LBB) employing a solid electrolyte was investigated. It showed the discharge capacity of c.a. 147 mAh/(g-LiBr) for the first cycle, which decreased with repeating charge/discharge cycles. The capacity fading was mainly due to increase of the interfacial resistance between an aqueous active material solution and a solid electrolyte. From the results of symmetric cells and structural analysis of the surface of the solid electrolyte immersed in Br2 solutions, it was suggested that a Li+-depletion layer was formed on the surface of the solid electrolyte by contact with bromine.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Yoichi Takagishi ◽  
Takumi Yamanaka ◽  
Tatsuya Yamaue

Abstract Electrochemical physics-based simulations of Li-ion batteries using a mesoscale 3D structure of porous electrodes are one of the most effective approaches for evaluating the local Li concentration in active materials and the Li-ion concentration in electrolytes. However, this approach requires considerable computational resources compared with a simple 2D or 1D homogeneous simulation. In this work, we developed an advanced electrochemical physics-based simulation method for Li-ion batteries that enabled a quasi-3D simulation of charge/discharge using only a single 2D slice image. The governing equations were based on typical theories of electrochemical reactions and ion transport. From referencing the 2D plane, the model was able to simulate both the Li concentration in the active material and the Li-ion concentration in the electrolyte for their subsequent consideration in a virtual 3D structure. To confirm the validity of our proposed model, a full 3D discharge simulation with randomly packed active material particles was performed and compared with the results of the quasi-3D model and a simple-2D model. Results indicated that the quasi-3D model properly reproduced the sliced Li and Li-ion concentrations simulated by the full 3D model in the charge/discharge process, whereas the simple-2D simulation partially overestimated or underestimated these concentrations. In addition, the quasi-3D model made it possible to dramatically decrease the computation time compared to the full-3D model. Finally, we applied the model to an actual scanning electron microscopy equipped with a focused ion beam (FIB-SEM) image of a positive electrode. Graphic abstract


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254023
Author(s):  
Shahrzad Arshadi Rastabi ◽  
Rasoul Sarraf-Mamoory ◽  
Ghadir Razaz ◽  
Nicklas Blomquist ◽  
Magnus Hummelgård ◽  
...  

The cycling performance of supercapacitors sometimes becomes limited when electrode materials slough off during frequent charge–discharge cycles, due to weak bonding between the active material and the current collector. In this work, a flexible graphite foil substrate was successfully used as the current collector for supercapacitor electrodes. Graphite foil substrates were treated in different ways with different acid concentrations and temperatures before being coated with an active material (NiMoO4/nanographite). The electrode treated with HNO3 (65%) and H2SO4 (95%) in a 1:1 ratio at 24°C gave better electrochemical performance than did electrodes treated in other ways. This electrode had capacitances of 441 and 184 Fg–1 at current densities of 0.5 and 10 Ag-1, respectively, with a good rate capability over the current densities of the other treated electrodes. SEM observation of the electrodes revealed that NiMoO4 with a morphology of nanorods 100–120 nm long was properly accommodated on the graphite surface during the charge–discharge process. It also showed that treatment with high-concentration acid created an appropriately porous and rough surface on the graphite, enhancing the adhesion of NiMoO4/nanographite and boosting the electrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document