An Optimization Design Method of Geometric Parameters of Skid Shoe Referring to Subject Weight of Marine Structures

2014 ◽  
Vol 678 ◽  
pp. 325-332
Author(s):  
Feng Yan Yang ◽  
Xiang Zhen Yan ◽  
Zheng Rong Song ◽  
Ming Wang Yang ◽  
Zi Kun Zhao ◽  
...  

The optimization design method of geometric parameters of skid shoe which is used to subject weight of marine structures is proposed. Considering skid shoe as steel frame structure, total weight and the bearing capacity of the skid shoe are selected as optimal objectives, and geometric parameters of the skid shoe are taken as design variables. Taking the strength, stiffness, local stability of the skid shoe as the constraint conditions, multi-objectives constraints optimization model of geometric parameters is established, and solved based on complex method. According to research results, a computer program has been developed using VC language. Then geometric optimum parameters of skid shoe in service of CNOOC are analyzed by the program. The results show that optimized design decreases steel volume, steel plate thickness by 28.7%, 18.4%, respectively, compared with original design. The optimization method has a series of advantages, such as simple model, fast calculating speed, high calculation accuracy.

2011 ◽  
Vol 415-417 ◽  
pp. 460-463
Author(s):  
Li Liu ◽  
Hong Xia Liu

In the design of wrapping hoist, the roller strength is always a larger problem. In this paper, diameter, wall thickness and side plate thickness of the roller were selected as design variables, and volume of the roller acts as object function. Through analyzing its inner stresses, the mechanical model and mathematical model were set up. Adopting the optimization method of covering complex and VB programming software, an application software of a hoist roller optimization design was got. An example is used to verify correctness and practicability of the software. This optimization design method has practical significance on reducing the weight and material of a hoist roller.


2013 ◽  
Vol 357-360 ◽  
pp. 2410-2413
Author(s):  
Wei Xu ◽  
Jian Sheng Feng ◽  
Fei Fei Feng

The primary object of this fundamental research is to reveal the application of genetic algorithm improved on the optimization design of cantilever supporting structure. In order to meet the strength of pile body and pile top displacement as well as design variables subjected to constraint, an algorithm is carried on to seek the optimum solution and relevant examples by means of comprehensively considering the effects on center-to-center spacing between piles,pile diameter and quantity of distributed steel, which is taken the lowest engineering cost as objective function. Through the comparison of the optimized scheme and original design, this fruitful work provides explanation to the effectiveness of genetic algorithm in optimization design. These findings of the research lead to the conclusion that the shortcomings of traditional design method is easy to fall into local optimal solution. The new optimization method can overcome this drawback.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110349
Author(s):  
Huiqiang Guo ◽  
Mingzhe Li ◽  
Pengfei Sun ◽  
Changfeng Zhao ◽  
Wenjie Zuo ◽  
...  

Rotary-wing unmanned aerial vehicles (UAVs) are widespread in both the military and civilian applications. However, there are still some problems for the UAV design such as the long design period, high manufacturing cost, and difficulty in maintenance. Therefore, this paper proposes a novel design method to obtain a lightweight and maintainable UAV frame from configurable design to detailed design. First, configurable design is implemented to determine the initial design domain of the UAV frame. Second, topology optimization method based on inertia relief theory is used to transform the initial geometric model into the UAV frame structure. Third, process design is considered to improve the manufacturability and maintainability of the UAV frame. Finally, dynamic drop test is used to validate the crashworthiness of the UAV frame. Therefore, a lightweight UAV frame structure composed of thin-walled parts can be obtained and the design period can be greatly reduced via the proposed method.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Huaizhi Li ◽  
Zhenping Feng

The aerodynamic performance, structural strength and wheel weight are three important factors in the design process of the radial turbine. This paper presents an investigation on these aspects and develops an optimization design approach for radial turbine with consideration of the three factors. The aerodynamic design for the turbine wheel with inlet diameter of 230mm for 100kW-class microturbine unit is carried out firstly as the original design. Then, the cylinder parabolic geometrical design method is applied to the wheel modeling and structural design, but the maximum stress predicted by Finite Element Analysis greatly exceeds the yield limit of material. Furthermore, the wheel weight is above 7.2kg thus bringing some critical difficulties for bearing design and turbine operation. Therefore, an integrated optimization design method for radial turbine is studied and developed in this paper with focus on the wheel design. Meridional profiles and shape lines of turbine wheel are optimized with consideration of the whole wheel weight. Main structural modeling parameters are reselected to reduce the wheel weight. Trade-off between aerodynamic performance and strength performance is highly emphasized during the optimization design. The results show that the optimized turbine wheel gets high aerodynamic performance and acceptable stress distribution with the weight less than 3.8kg.


2018 ◽  
Vol 91 (1) ◽  
pp. 124-133
Author(s):  
Zhe Yuan ◽  
Shihui Huo ◽  
Jianting Ren

Purpose Computational efficiency is always the major concern in aircraft design. The purpose of this research is to investigate an efficient jig-shape optimization design method. A new jig-shape optimization method is presented in the current study and its application on the high aspect ratio wing is discussed. Design/methodology/approach First, the effects of bending and torsion on aerodynamic distribution were discussed. The effect of bending deformation was equivalent to the change of attack angle through a new equivalent method. The equivalent attack angle showed a linear dependence on the quadratic function of bending. Then, a new jig-shape optimization method taking integrated structural deformation into account was proposed. The method was realized by four substeps: object decomposition, optimization design, inversion and evaluation. Findings After the new jig-shape optimization design, both aerodynamic distribution and structural configuration have satisfactory results. Meanwhile, the method takes both bending and torsion deformation into account. Practical implications The new jig-shape optimization method can be well used for the high aspect ratio wing. Originality/value The new method is an innovation based on the traditional single parameter design method. It is suitable for engineering application.


1988 ◽  
Author(s):  
Wang Qinghuan ◽  
Sun Zhiqin

A new procedure employed in computer-aided design of centrifugal compressor stage to determine its over-all dimensions is described in this paper. By the use of the COMPLEX METHOD, the arbitrary number of variables to be optimized can be specified to remove the hidden danger of the local optima which stems from adopting a few, for example two or three, variables to be optimized. This procedure is available for any complicated implicit nonlinear objective function and ensures establishment of a true optimum solution. Numerical calculations have been carried out by using the computer program described here to check the ability of the optimization method. The results obtained by the calculations agree fairly well with that obtained by experiments.


2021 ◽  
Vol 261 ◽  
pp. 03040
Author(s):  
Zhang Shiling

Equal margin design method based on the classic analytic formula is widely used in development of extra-high voltage bushing products, and its effectiveness and practicality have been fully validated. However, model and temperature factors have significant impact on internal E-field distribution of UHVAC and UHVDC bushing condenser, which traditional analytic formula is difficult to evaluate quantitatively, so it’s necessary to improve traditional equal margin design method. Firstly, basic principles of equal margin design method and its software package were briefly described, and the laws of model and temperature factors influencing on condenser E-field were investigated on FEM (finite element method) computing platform. Based on these, mathematical model of improved equal margin design method for bushing condenser was established, and flow chart of optimization process combining FEM electro-thermal coupling calculation with genetic algorithm was presented. The improved method was applied to design of UHV RIP oil-gas prototype to realize uniform axial E-field distribution along bushing condenser and equal partial discharge margin between adjacent foils. Bushing condenser was fabricated according to above optimized design structure, and has passed all type tests. In the paper, the FEM electro-thermal coupling calculation method was applied to the inner insulation optimization design to make bushing condenser’s design more suitable. The paper can provide some theoretical guidelines for research and development of other bushings in UHV level.


2014 ◽  
Vol 662 ◽  
pp. 160-163
Author(s):  
Lei Xu

The optimization design method was rarely used to design the gravity buttress of arch dam in the past. With this in mind, the parametric description of gravity buttress is given, and the auto-calculation of its exerting loads and the safety coefficient of anti-slide stability are realized subsequently. Then, the optimization design model of gravity buttress and the procedures of optimization design are presented using the asynchronous particle swarm optimization method. Finally, ODGB software, which is short for Optimization Design of Gravity Buttress software, is developed and verified.


2012 ◽  
Vol 455-456 ◽  
pp. 1504-1508
Author(s):  
Huan Ming Chen ◽  
Da Wei Liu

Based on the theory of FEM, the hooklift arm is modeled with the FEM software, and the structure of the device is optimized with genetic algorithm in a multi-objective/multi-parameter optimization environment, which results in an optimal design decision of the hooklift arm device under the engineering constraint. Comparison between optimized design decision and original design decision shows that the optimization is correct and the proposed multi-objective/multi-parameter optimization method is effective in improving the hooklift arm device.


Sign in / Sign up

Export Citation Format

Share Document