Face Gender Recognition Research Based on Local Features and Support Vector Machine

2014 ◽  
Vol 687-691 ◽  
pp. 3714-3717
Author(s):  
Lin Zhang

In this paper, we proposed a face gender recognition method based on local features and SVM. First, we divide the face image into five parts which are used to instead of the whole face for better recognition performance. Second, we use CS to extract local features of these five parts. Then, we respectively train five single SVM classifiers to achieve one to one feature recognition for local features. Finally, decision information fusion is used to achieve the final classification. Because SVM were successfully used to solve numerous pattern recognition problems and is mainly used to solve two-classification problem, selecting SVM to do gender recognition in our method has the obvious superiority. After a lot of experiments, results show that the proposed method in this paper is stable and effective, greatly improving the efficiency of face gender recognition.

2014 ◽  
Vol 989-994 ◽  
pp. 4187-4190 ◽  
Author(s):  
Lin Zhang

An adaptive gender recognition method is proposed in this paper. At first, do multiwavlet transform to face image and get its low frequency information, then do feature extraction to the low frequency information using compressive sensing (CS), use extreme learning machine (ELM) to achieve gender recognition finally. In the process of feature extraction, we use genetic algorithm (GA) to get the number of measurements of CS in order to gain the highest recognition rate, so the method can adaptive access optimal performance. Experimental results show that compared with PDA and LDA, the new method improved the recognition accuracy substantially.


2014 ◽  
Vol 543-547 ◽  
pp. 2350-2353
Author(s):  
Xiao Yan Wan

In order to extract the expression features of critically ill patients, and realize the computer intelligent nursing, an improved facial expression recognition method is proposed based on the of active appearance model, the support vector machine (SVM) for facial expression recognition is taken in research, and the face recognition model structure active appearance model is designed, and the attribute reduction algorithm of rough set affine transformation theory is introduced, and the invalid and redundant feature points are removed. The critically ill patient expressions are classified and recognized based on the support vector machine (SVM). The face image attitudes are adjusted, and the self-adaptive performance of facial expression recognition for the critical patient attitudes is improved. New method overcomes the effect of patient attitude to the recognition rate to a certain extent. The highest average recognition rate can be increased about 7%. The intelligent monitoring and nursing care of critically ill patients are realized with the computer vision effect. The nursing quality is enhanced, and it ensures the timely treatment of rescue.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tongxin Wei ◽  
Qingbao Li ◽  
Jinjin Liu ◽  
Ping Zhang ◽  
Zhifeng Chen

In the process of face recognition, face acquisition data is seriously distorted. Many face images collected are blurred or even missing. Faced with so many problems, the traditional image inpainting was based on structure, while the current popular image inpainting method is based on deep convolutional neural network and generative adversarial nets. In this paper, we propose a 3D face image inpainting method based on generative adversarial nets. We identify two parallels of the vector to locate the planer positions. Compared with the previous, the edge information of the missing image is detected, and the edge fuzzy inpainting can achieve better visual match effect. We make the face recognition performance dramatically boost.


2020 ◽  
Vol 32 ◽  
pp. 03005
Author(s):  
Rahul Awhad ◽  
Saurabh Jayswal ◽  
Adesh More ◽  
Jyoti Kundale

Due to the growing advancements in technology, many software applications are being developed to modify and edit images. Such software can be used to alter images. Nowadays, an altered image is so realistic that it becomes too difficult for a person to identify whether the image is fake or real. Such software applications can be used to alter the image of a person’s face also. So, it becomes very difficult to identify whether the image of the face is real or not. Our proposed system is used to identify whether the image of a face is fake or real. The proposed system makes use of machine learning. The system makes use of a convolution neural network and support vector classifier. Both these machine learning models are trained using real as well as fake images. Both these trained models will take an image as an input and will determine whether the image is fake or real.


2019 ◽  
Vol 1 (1) ◽  
pp. 32-40
Author(s):  
Muhammad Noor Fatkhannudin ◽  
Adhi Prahara

Computer vision technology has been widely used in many applications and devices that involves biometric recognition. One of them is gender classification which has notable challenges when dealing with unique facial characteristics of human races. Not to mention the challenges from various poses of face and the lighting conditions. To perform gender classification, we resize and convert the face image into grayscale then extract its features using Fisherface. The features are reduced into 100 components using Principal Component Analysis (PCA) then classified into male and female category using linear Support Vector Machine (SVM). The test that conducted on 1014 face images from various human races resulted in 86% of accuracy using standard k-NN classifier while our proposed method shows better result with 88% of accuracy.


2020 ◽  
Vol 34 (5) ◽  
pp. 521-530
Author(s):  
Farid Ayeche ◽  
Adel Alti

In this paper, we present a face recognition approach based on extended Histogram Oriented Gradient (HOG) descriptors to extract the facial expressions features allowing classifying the faces and facial expressions. The approach is based on determining the different directional codes on the face image based on edge response values to define the feature vector from the face image. Its size is reduced to improve the performance of the SVM (Support Vector Machine) classifier. Experiments are conducted using two public datasets: JAFFE for facial expression recognition and YALE for face recognition. Experimental results show that the proposed descriptor achieves recognition rate of 92.12% and execution time ranging from 0.4s to 0.7s in all evaluated databases compared with existing works. Experiments demonstrate and confirm both the effectiveness and the efficiency of the proposed descriptor.


2019 ◽  
Vol 892 ◽  
pp. 200-209
Author(s):  
Rayner Pailus ◽  
Rayner Alfred

Adaboost Viola-Jones method is indeed a profound discovery in detecting face images mainly because it is fast, light and one of the easiest methods of detecting face images among other techniques of face detection. Viola Jones uses Haar wavelet filter to detect face images and it produces almost 80%accuracy of face detection. This paper discusses proposed methodology and algorithms that involved larger library of filters used to create more discrimination features among the images by processing the proposed 15 Haar rectangular features (an extension from 4 Haar wavelet filters of Viola Jones) and used them in multiple adaptive ensemble process of detecting face image. After facial detection, the process continues with normalization processes by applying feature extraction such as PCA combined with LDA or LPP to extract our week learners’ wavelet for more classification features. Upon the process of feature extraction proposed feature selection to index these extracted data. These extracted vectors are used for training and creating MADBoost (Multiple Adaptive Diversified Boost)(an improvement of Adaboost, which uses multiple feature extraction methods combined with multiple classifiers) is able to capture, recognize and distinguish face image (s) faster. MADBoost applies the ensemble approach with better weights for classification to produce better face recognition results. Three experiments have been conducted to investigate the performance of the proposed MADBoost with three other classifiers, Neural Network (NN), Support Vector Machines (SVM) and Adaboost classifiers using Principal Component Analysis (PCA) as the feature extraction method. These experiments were tested against obstacles of POIES (Pose, Obstruction, Illumination, Expression, Sizes). Based on the results obtained, Madboost is found to be able to improve the recognition performance in matching failures, incorrect matching, matching success percentages and acceptable time taken to perform the classification task.


Author(s):  
P. CAMPADELLI ◽  
R. LANZAROTTI ◽  
G. LIPORI

The literature on the topic has shown a strong correlation between the degree of precision of face localization and the face recognition performance. Hence, there is a need for precise facial feature detectors, as well as objective measures for their evaluation and comparison. In this paper, we will present significant improvements to a previous method for precise eye center localization, by integrating a module for mouth localization. The technique is based on Support Vector Machines trained on optimally chosen Haar wavelet coefficients. The method has been tested on several public databases; the results are reported and compared according to a standard error measure. The tests show that the algorithm achieves high precision of localization.


2010 ◽  
Vol 20-23 ◽  
pp. 1253-1259
Author(s):  
Chang Jun Zhou ◽  
Xiao Peng Wei ◽  
Qiang Zhang

In this paper, we propose a novel algorithm for facial recognition based on features fusion in support vector machine (SVM). First, some local features and global features from pre-processed face images are obtained. The global features are obtained by making use of singular value decomposition (SVD). At the same time, the local features are obtained by utilizing principal component analysis (PCA) to extract the principal Gabor features. Finally, the feature vectors which are fused with global and local features are used to train SVM to realize the face expression recognition, and the computer simulation illustrates the effectivity of this method on the JAFFE database.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Kun Sun ◽  
Xin Yin ◽  
Mingxin Yang ◽  
Yang Wang ◽  
Jianying Fan

At present, the face recognition method based on deep belief network (DBN) has advantages of automatically learning the abstract information of face images and being affected slightly by active factors, so it becomes the main method in the face recognition area. Because DBN ignores the local information of face images, the face recognition rate based on DBN is badly affected. To solve this problem, a face recognition method based on center-symmetric local binary pattern (CS-LBP) and DBN (FRMCD) is proposed in this paper. Firstly, the face image is divided into several subblocks. Secondly, CS-LBP is used to extract texture features of each image subblock. Thirdly, texture feature histograms are formed and input into the DBN visual layer. Finally, face classification and face recognition are completed through deep learning in DBN. Through the experiments on face databases ORL, Extend Yale B, and CMU-PIE by the proposed method (FRMCD), the best partitioning way of the face image and the hidden unit number of the DBN hidden layer are obtained. Then, comparative experiments between the FRMCD and traditional methods are performed. The results show that the recognition rate of FRMCD is superior to those of traditional methods; the highest recognition rate is up to 98.82%. When the number of training samples is less, the FRMCD has more significant advantages. Compared with the method based on local binary pattern (LBP) and DBN, the time-consuming of FRMCD is shorter.


Sign in / Sign up

Export Citation Format

Share Document