Dividing the Complicated General Shapes of the Surface into Partial Elements According to Curvature (Gauss and Maximal Curvature) and its Multi-Axis Machining

2014 ◽  
Vol 693 ◽  
pp. 225-230
Author(s):  
Jiří Šafka ◽  
Martin Lachman ◽  
Petr Zelený ◽  
Martin Seidl

The paper deals with multi-axis machining of complex shapes of freeform surfaces. Machining of such surfaces is very difficult and the critical operation is the optimal setting of tilt and lead angle which, along with other parameters, must ensure collision-free machining. This paper describes the possible dividing of solved freeform surface areas into partial elements with similar properties from CAD data using Matlab software instruments. The partition is solved by algorithms calculated according to the curvature of the surface using both methods the maximum and the Gaussian curvature. These partial elements can be machined separately which allows employment of tools with optimal dimensions for individual elements. This process enables significant reduction of tool-path necessary for machining these shapes which also leads to reduction of the working time. Furthermore, there are practical examples including a comparison of standard method and the use of machining process optimized by the algorithm in this article.

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988011
Author(s):  
Lingbao Kong ◽  
Yingao Ma ◽  
Mingjun Ren ◽  
Min Xu ◽  
Chifai Cheung

Compound freeform surfaces are widely used in bionic and optical applications. The manufacturing and measurement of such surfaces are challenging due to the complex geometry with multi-scale features in a high precision level with sub-micrometer form accuracy and nanometer surface finish. This article presents a study of ultra-precision machining and characterization of compound freeform surfaces. A hybrid machining process by combining slow slide servo and fast tool servo is proposed to machine compound freeform surfaces. The machining process for this hybrid tool servo is explained, and tool path generation is presented. Then, a normal template-based matching and characterization method is proposed to evaluate such compound freeform surfaces. Experimental studies are undertaken to machine a compound freeform surface using the proposed method based on a four-axis ultra-precision machine tool. The machined compound freeform surface is also measured and characterized by the proposed analysis and characterization method. The experimental results are presented, and the machining errors for compound freeform surfaces are also discussed.


Author(s):  
Jun Wang ◽  
Zhigang Wang ◽  
Weidong Zhu ◽  
Yingfeng Ji

This paper describes a method of machining feature recognition from a freeform surface based on the relationship between unique machining patches and critical points on a component’s surface. The method uses Morse theory to extract critical surface points by defining a scalar function on the freeform surface. Features are defined by region growing between the critical points using a tool path generation algorithm. Several examples demonstrate the efficiency of this approach. The recognized machining features can be directly utilized in a variety of downstream computer aided design/computer aided manufacturing (CAM) applications, such as the automated machining process planning.


2007 ◽  
Vol 339 ◽  
pp. 422-426 ◽  
Author(s):  
Ling Bao Kong ◽  
Chi Fai Cheung ◽  
Wing Bun Lee ◽  
Sandy To

This paper presents an integrated platform for modelling and measurement of freeform surface generation in ultra-precision raster milling. It is composed of several components which are optics design component, tool path generator, modelling system, measurement system, evaluation component, compensation component and optimization component, respectively. The research emphasizes on modelling and simulation of freeform surface generation, the prediction of the cutting performance and hence the optimization of cutting strategy in the ultra-precision raster milling of freeform surfaces. A measurement system is also proposed to carry out a fast and efficient measurement plan of freeform surfaces. Non-uniform Rational B-Spline (NURBS) will be employed for the development of the integrated platform which will meet Standard for the Exchange of Product model data (STEP).


2021 ◽  
Author(s):  
Minglong Guo ◽  
Zhaocheng Wei ◽  
Shiquan Li ◽  
Minjie Wang ◽  
Hang Gao ◽  
...  

Abstract In the multi-axis machining of freeform surface, compared with ball end mill, the fillet end mill has higher machining efficiency under the same residual height and has been widely used. As the most important physical quantity in machining process, milling force has always been the focus of research. In this paper, the geometry contact between fillet end mill and freeform surface is analyzed by analytical method, and then the milling force prediction model of multi-axis machining is established. Based on differential discretization, the cutter location of multi-axis machining of freeform surface is approximate to multi-axis machining of oblique plane, which simplifies the research object. The inclination angle is defined to describe the relationship among cutter axis, feed and workpiece in cutter coordinate system. The space range of the cutting edge element participating in material cutting is constructed by the swept surface of previous tool path, the to-be machined surface and the feed direction surface, and the in cut cutting edge is determined by judging the cutting edge element one by one. Considering cutter run-out, the element cutting forces on the cylindrical and fillet surfaces of the fillet end mill are derived, and all the element forces within in cut cutting edge are summed by vector to obtain the overall milling force of fillet end mill. Simulation results show that, compared with the solid method, this contact analysis method between cutter and workpiece can take both efficiency and accuracy into account. In the machining experiment, the measured force and predicted force along tool path are consistent in trend and amplitude, which verifies the effectiveness of the milling force prediction model.


2010 ◽  
Vol 154-155 ◽  
pp. 310-313
Author(s):  
Xue Feng Bi ◽  
Jin Sheng Wang ◽  
Jia Shun Shi ◽  
Ya Dong Gong

Micromold manufacturing technology is very important for the mass production of micro parts. In this paper, modeling of micromold is established in 3D software firstly. The 3D modeling is input into machining simulation software Master CAM to simulate machining process. The machining parameters and cutting tool path are optimized in machining simulation. Machining G code of micromold obtained from post-process program of Master CAM is input into HMI system of Micro Machine Tool (MMT), and hence the micromold will be machined precisely in MMT.


Author(s):  
Hossein Ghorbani-Menghari ◽  
Mehrdad Azadipour ◽  
Mehran Ghasempour-Mouziraji ◽  
Young Hoon Moon ◽  
Ji Hoon Kim

The deformation machining process (DMP) involves machining and incremental forming of thin structures. It can be applied for manufacturing products such as curved-surface blades without using 5-axis computerised numerical control machines. This work presents the effect of tool diameter and forming temperature on spring-back and dimensional accuracy of a simple fabricated part. The results of the first phase of the study are utilised to design the fabrication process of a curved surface blade. A feature-based algorithm is used to design the tool path for the forming process. The dimensional accuracy of the final product is improved through warm forming, two-point incremental forming, and extension of the bending zone to the outside of the product edges. The results show that DMP can be used to fabricate complex curved-surface workpieces with acceptable dimensional accuracy.


2017 ◽  
Author(s):  
Dong-Hyeon Kim ◽  
Wan-Sik Woo ◽  
Won-Shik Chu ◽  
Sung-Hoon Ahn ◽  
Choon-Man Lee

Laser-assisted machining (LAM) process is an effective method to facilitate material removal processes for difficult-to-cut materials. In LAM process, the mechanical strength of various materials is reduced by a laser heat source focused in front of the cutting tool during machining. Since the laser heat source is located ahead of the cutting tool, the workpiece is preheated by the heat source. This enables difficult-to-cut materials to be machined more easily with low cutting energy, increasing the machining productivity and accuracy. It is difficult to apply laser-assisted milling (LAMilling) to workpieces having complex shapes, because it is not easy to control laser preheating and the cutting tool path for three-dimensionally shaped workpieces. LAMilling has only been used in limited fields such as single-direction machining of flat surfaces. To apply this process in the industrial field, studies on workpieces having various shapes are needed. This study aims to develop a laser-assisted milling device having multiple axes and to investigate the machining characteristics of several difficult-to-cut materials.


2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.


Sign in / Sign up

Export Citation Format

Share Document