Fabrication of Stable Superhydrophobic Surface with Low Adhesion on Aluminum Foil

2014 ◽  
Vol 697 ◽  
pp. 80-84
Author(s):  
Yong Mei Xia ◽  
You Fa Zhang ◽  
Xin Quan Yu ◽  
Feng Chen

Metal aluminum surface can be corroded easily in acid and alkaline environment. Inspired by the self-cleaning lotus leaf, the development of superhydrophobic metal surfaces to prevent metals from corroding is enjoying tremendous popularity amongst scientists and engineers. In this work, superhydrophobic surface was obtained on aluminum foils via a facile neutral sol solution immersion process and post-modification in ethanol solution of heptadecafluoro-1,1,2,2-tetradecyl trimethoxysilane (FAS-17) solution through a hydrothermal synthesis technique. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and wettability of the produced films on aluminum substrates. The results indicated that the superhydrophobic surface, configured of a rough labyrinth structure with convexity and notch, has robust hydrophobility, which had a static water contact angle of 165.6 ± 2.8° and a water roll-off angle of <1°, exhibited long-term durability and stability in air. The present research work provides a new strategy for the simple preparation superhydrophobic films on aluminum foil for practical industrial applications.

Author(s):  
Sang Eon Lee ◽  
Dongjin Lee ◽  
Jin-Ha Kim ◽  
Kang Won Lee ◽  
Kwang-Cheol Lee ◽  
...  

A novel change method of surface wettability using both micro- and nano-sized geometrical shape is presented in this paper. After the black silicon is formed in reactive ion etching, SU-8 mold is fabricated on top of the black silicon that has nano-sized holes. After the microfabrication of SU-8 photoresist mold, poly-dimethysiloxane (PDMS) is poured into the mold. As a result, the molded PDMS surface has both micro- and nano-sized structures, which is similar to lotus leaf. The diameter of cylindrical pillar micro structures ranges from 50 to 100 μm. The water contact angle of 150° is obtained on the molded PDMS surface with pillars diameter of 50 μm. The superhydrophobic surface made of micro- and nanostructures is straightforwardly formed, increasing water contact angle on the engineered surface.


Langmuir ◽  
2007 ◽  
Vol 23 (13) ◽  
pp. 6875-6878 ◽  
Author(s):  
Michael Taylor ◽  
Andrew J. Urquhart ◽  
Mischa Zelzer ◽  
Martyn C. Davies ◽  
Morgan R. Alexander

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 121 ◽  
Author(s):  
Jianbing Meng ◽  
Xiaojuan Dong ◽  
Yugang Zhao ◽  
Rufeng Xu ◽  
Xue Bai ◽  
...  

A superhydrophobic surface with low adhesion and good wear resistance was fabricated on Ti6Al4V substrates via TiO2/Ni composite electrodeposition, and subsequently modified with a fluoroalkylsilane (FAS) film. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical contact angle measurements were used to characterize the surface morphologies, chemical compositions, and surface wettability. The superhydrophobicity of the as-prepared surface results from the fabrication of a hierarchical structure and the assembly of low-surface energy fluorinated components. The as-prepared surface had a water contact angle as high as 162.6° and a sliding angle close to 1.8°. Scratch and abrasion tests showed that the superhydrophobic coating provided a superior wear resistance and stable mechanical abrasion protection. In addition, the influence of processing conditions, such as working voltage, deposited time, pH value, and TiO2 concentration, was also investigated.


2014 ◽  
Vol 680 ◽  
pp. 93-96
Author(s):  
Muhammad Hafiz Ab Aziz ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
Wan Mokhdzani Wan Norhaimi ◽  
Steven Taniselass ◽  
...  

This paper reports on the contact angle measurement analysis on a glass based surface for anodic bonding process cleaned by three distinct cleaning processes. The three types of glass based surface used were silica, pyrex, and soda lime glass. The three cleaning solutions tested in this experiment were RCA, piranha and acetone. Water Droplet Test (WDT) was done to analyze the contact angle of micro droplet on sample surface. It can be done by dropping a droplet of water in constant volume at the fixed height and angle. Only RCA process constantly decreases the contact angle value after cleaning. The compilations of data strongly proved that all samples become hydrophilic after RCA cleaning process. The solid surface is considered hydrophilic when water contact angle is smaller than 90°, and hydrophobic profile if the water contact angle is larger than 90°. Samples which undergo piranha and acetone cleaning did not prove any characteristic of hydrophilic or hydrophobic surface after cleaning.


2013 ◽  
Vol 747 ◽  
pp. 182-185
Author(s):  
Tharinee Theerathanagorn ◽  
Boonlom Thavornyutikarn ◽  
Wanida Janvikul

In this study, poly (glycerol sebacate) (PGS) was initially synthesized via condensation polymerization of glycerol and sebacic acid at equimolar ratio (1:1) at 130°C for 24 h. The number average molecular weight (Mn) of the resulting polymer determined by gel permeation chromatography (GPC) was about 2800 g/mol. Porous PGS scaffolds were subsequently prepared by a particle-leaching technique. NaCl was added into the polymer at 60-90% w/w; the mixtures were cured in Teflon molds at 140°C for 16 h. The porous scaffolds were further subjected to surface treatment with low pressure oxygen plasma to increase surface carboxyl and hydroxyl groups and thereby enhance hydrophilicity of PGS scaffold surface. The surface morphology and wettability of both untreated PGS and plasma-treated PGS scaffolds were comparatively determined by scanning electron microscopy (SEM) and water contact angle measurement, respectively. A considerable decrease in water contact angle was observed on the PGS scaffolds after the plasma treatment. The surface chemistry, mechanical strength and degree of swelling of the PGS scaffolds were also assessed by X-ray photoelectron spectroscopy (XPS), dynamic mechanical analysis (DMA) and swelling measurement, respectively.


2015 ◽  
Vol 817 ◽  
pp. 76-81 ◽  
Author(s):  
Yu Xiao Mi ◽  
Ze Hua Zhou ◽  
Ze Hua Wang ◽  
Guo Wei Wang ◽  
Juan Yao

The plasma spraying Al2O3+13wt. %TiO2 ceramic coating was coated with organic-inorganic hybrid emulsion. The hybrid emulsion prepared through co-hydrolysis and copolycondensation reactions of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES), and methylsilicone resin was added in the emulsion to improve the film-forming properties. The morphologies, chemical compositions and hydrophobicity of the resulting surfaces were analyzed by scanning electron microscopy (SEM), 3-dimensional stereoscopic microscope, energy dispersive X-ray detector (EDX), Fourier transfer infrared spectrometer (FT-IR) and water contact angle measurement. When the mole ratio of TEOS/MTES and the weight ratio of methylsilicone resin were 1:1 and 3.5wt. %, respectively, this surface displayed good film-forming properties. The contact angle was 130.24°, and the contact angle hysteresis was less than 10°.


2017 ◽  
Vol 89 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Yongqiang Li ◽  
Chao Zou ◽  
Jianzhong Shao ◽  
Ya’nan Li

Cotton fabric is commonly used in daily life, but it is easily wetted and contaminated by liquid. Herein, we present a simple and environmentally friendly plasma technology for hydrophobic modification of cotton fabric. In order to endow superhydrophobicity to cotton fabric, helium plasma inducing graft polymerization of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (D4Vi) was utilized to wrap SiO2 particles on cotton fabrics. Cotton fabrics were successively dipped in silica sol and D4Vi, then treated by plasma. Cotton fabrics before and after modification were characterized by using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. The experimental results showed that the cotton-SiO2-D4Vi consisted of nanoscale SiO2 protrusions and low-surface-energy film polymerized by D4Vi. In addition, the one wrapped SiO2 of 161 nm presented excellent hydrophobicity, washing durability, and repellency toward different types of liquids with a water contact angle of 152°.


2021 ◽  
Author(s):  
Takahiro Murono ◽  
Kenta Hongo ◽  
Kousuke Nakano ◽  
Ryo Maezono

Abstract Controlling the water contact angle on a surface is important for regulating its wettability in industrial applications. Therefore, it is crucial to develop ab initio evaluation methods that can accurately predict this angle. The ab initio predictions require an adsorption structure model for the adsorption of liquid molecules on a surface, but the construction of this model depends on whether the test surface comprises an insulating or metallic material because the surface reconstruction takes quite a different form in each case. Previous studies have focused on the estimation of the water contact angle on insulators; however, this study elucidates the water contact angle on a metallic surface, Cu(111). Because the feasibility of ab initio evaluations depends on the approximation of liquid–gas interface energy, which can be roughly estimated through the interface energy of crystal ice, it is natural to use the periodic-honeycomb array of water molecules as the adsorption model for the water on the surface. However, despite the successful application of the periodic model for ab initio prediction of the water contact angle on insulating surfaces, applying this model to metallic surfaces has not provided satisfactory predictions that reproduce experimental values. Therefore, in this study, we propose the use of models with isolated water oligomers for the ab initio prediction of the water contact angle on a metallic surface, which achieved an accurate prediction. The ambiguity of the models based on the size and coverage of the oligomers was small (∼ ±10 °), which was averaged out to give a plausible value based on the Boltzmann weight with the adsorbing energies. The proposed procedure can be used to estimate the wettability of the surfaces of other metallic materials.


2021 ◽  
Vol 875 ◽  
pp. 322-328
Author(s):  
Aneeqa Naeem ◽  
Esham Butt ◽  
Hamza Khawaja ◽  
Irfan Nadeem ◽  
Rehan Akhter ◽  
...  

Traditionally superhydrophobic surfaces are prepared by applying liquid repellant organic coatings or nano-based coatings. These superhydrophobic coatings are prone to wear and can be easily damaged by abrasion and cleaning. Recently researchers are switching interest to more efficient and promising technology of pulse laser texturing for engineering sub-micron topographies to have superhydrophobic surfaces. In this research, the micro-second Laser Pulses are used to feature sub-micron textures on titanium nitride coated aluminum and polished aluminum surfaces in order to achieve the water contact angle greater than 150°. Titanium nitride coated aluminum surface with scan line separation of 50 µm shows superior hydrophobicity having a water contact angle of 156º. These superhydrophobic aluminum surfaces have applications for anti-water clogging and anti-corrosion use.


Sign in / Sign up

Export Citation Format

Share Document