Ultrasonic Measurement of Residual Stresses in Welded Elements of Ship Structure

2011 ◽  
Vol 70 ◽  
pp. 273-278 ◽  
Author(s):  
Yuri Kudryavtsev ◽  
Jacob Kleiman ◽  
Helena Polezhayeva

The objective of the study described in this paper is to identify the residual stress distribution and relaxation in standard welded specimens as well as in a large-scale welded panel imitating the critical, from the fatigue point of view, zones of ship structure. The residual stresses were measured after welding and in the process of fatigue loading of welded elements by the UltraMARS system that is based on using ultrasound. The measurements had shown that the maximum residual stresses near the welds (4-5 mm away from the weld) reach levels 290-320 MPa that are close to the yield strength of considered material both in welded specimens and in the large scale panel. Analysis of residual stress relaxation in the welded panel under the action of cyclic loading confirmed the fact that within the interval of applied stress ranges corresponding to the multi-cycle region of loading of the welded joints, the relaxation of residual stresses occurs mainly during the first cycle.

1998 ◽  
Vol 14 (04) ◽  
pp. 277-286
Author(s):  
Yasuhisa Okumoto

It is well known that ship structure experiences residual stresses due to heat process of steelmaking and assembly (cutting, bending, welding, straightening, etc.), and that these stresses affect ship hull strength. However, such stresses are usually not considered in strength calculations, because they are quantitatively ambiguous. This paper reviews the residual stresses in ship hull structure in accordance with each production step, including steel material, with reference to past measurements and analyses.


2019 ◽  
Vol 15 (3) ◽  
pp. 599-616 ◽  
Author(s):  
Dibakor Boruah ◽  
Xiang Zhang ◽  
Matthew Doré

PurposeThe purpose of this paper is to develop a simple analytical model for predicting the through-thickness distribution of residual stresses in a cold spray (CS) deposit-substrate assembly.Design/methodology/approachLayer-by-layer build-up of residual stresses induced by both the peening dominant and thermal mismatch dominant CS processes, taking into account the force and moment equilibrium requirements. The proposed model has been validated with the neutron diffraction measurements, taken from the published literature for different combinations of deposit-substrate assemblies comprising Cu, Mg, Ti, Al and Al alloys.FindingsThrough a parametric study, the influence of geometrical variables (number of layers, substrate height and individual layer height) on the through-thickness residual stress distribution and magnitude are elucidated. Both the number of deposited layers and substrate height affect residual stress magnitude, whereas the individual layer height has little effect. A good agreement has been achieved between the experimentally measured stress distributions and predictions by the proposed model.Originality/valueThe proposed model provides a more thorough explanation of residual stress development mechanisms by the CS process along with mathematical representation. Comparing to existing analytical and finite element methods, it provides a quicker estimation of the residual stress distribution and magnitude. This paper provides comparisons and contrast of the two different residual stress mechanisms: the peening dominant and the thermal mismatch dominant. The proposed model allows parametric studies of geometric variables, and can potentially contribute to CS process optimisation aiming at residual stress control.


1973 ◽  
Vol 95 (4) ◽  
pp. 238-242 ◽  
Author(s):  
S. Vaidyanathan ◽  
H. Weiss ◽  
I. Finnie

The residual stress distribution for a circumferential weld between cylinders was obtained in a prior publication for a full penetration, single pass weld with no variation of alloy content across the weld. In the present work the approach is extended to cover a wider variety of weld conditions. It is shown that the effects of multipass welds, partial penetration welds, and welds with filler metal differing greatly in properties from the base metal can approximately be taken into account. Experimental results are presented to support the proposed method of analysis.


Author(s):  
Chaodi Li ◽  
Ying Wang ◽  
James J. Mason

Bone cements are widely used to fix prostheses into bones for joint arthroplasty. During cement curing in total hip arthroplasty, residual stresses are introduced in the cement mantle. A finite element method was developed to predict such residual stress built-up. The effects of curing history on the residual stress distribution were investigated. Results showed that the predictions of the residual stresses agreed with the experimental tests very well. The residual stress build-up was shown to depend on the curing history. By preheating the prosthesis stem prior to implantation, a desired low level residual stress at the critical interface was obtained.


Author(s):  
S. J. Lewis ◽  
S. Hossain ◽  
C. E. Truman ◽  
D. J. Smith ◽  
M. Hofmann

A number of previously published works have shown that the presence of residual stresses can significantly affect measurements of fracture toughness, unless they are properly accounted for when calculating parameters such as the crack driving force. This in turn requires accurate, quantitative residual stress data for the fracture specimens prior to loading to failure. It is known that material mechanical properties may change while components are in service, for example due to thermo-mechanical load cycles or neutron embrittlement. Fracture specimens are often extracted from large scale components in order to more accurately determine the current fracture resistance of components. In testing these fracture specimens it is generally assumed that any residual stresses present are reduced to a negligible level by the creation of free surfaces during extraction. If this is not the case, the value of toughness obtained from testing the extracted specimen is likely to be affected by the residual stress present and will not represent the true material property. In terms of structural integrity assessments, this can lead to ‘double accounting’ — including the residual stresses in both the material toughness and the crack driving force, which in turn can lead to unnecessary conservatism. This work describes the numerical modelling and measurement of stresses in fracture specimens extracted from two different welded parent components: one component considerably larger than the extracted specimens, where considerable relaxation would be expected as well as a smaller component where appreciable stresses were expected to remain. The results of finite element modelling, along with residual stress measurements obtained using the neutron diffraction technique, are presented and the likely implications of the results in terms of measured fracture toughness are examined.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1234
Author(s):  
Alexander Ulbricht ◽  
Simon J. Altenburg ◽  
Maximilian Sprengel ◽  
Konstantin Sommer ◽  
Gunther Mohr ◽  
...  

Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses.


2014 ◽  
Vol 996 ◽  
pp. 506-511
Author(s):  
Intissar Frih ◽  
Pierre Antoine Adragna ◽  
Guillaume Montay

This paper presents a study on the application of the finite element methods to predict the influence of a defect on the residual stress distribution in a T-welded structure. A defect is introduced in a numerical model firstly without residual stress to see its impact (size and position) on the stress distribution. Secondly the most critical defect (determined previously) is simulated with a residual stress gradient. The obtained results are useful for computation stress concentration factor due to weld residual stresses.


Sign in / Sign up

Export Citation Format

Share Document