Forecast Model for Gas Well Productivity Based on PSO and SVM

2011 ◽  
Vol 71-78 ◽  
pp. 1915-1919
Author(s):  
Min Yang ◽  
Jun Li ◽  
Jing Cheng Liu

It is very important to forecast the gas well productivity of gas reservoir accurately. On the basis of analyzing the parameter performance of support vector machine (SVM) for regression estimation, the paper proposes gas well productivity prediction model based on particle swarm optimization (PSO) and SVM. The parameter of SVM was optimized by PSO. This method took advantage of the minimum structure risk of SVM and the quickly globally optimizing ability of PSO. Compared with BP neural network model, the proposed GA-SVM model for gas well productivity in practical engineering has higher accuracy and speed, and the maximum error is 2.8% . Thus, it provided a new approach to predict the gas well productivity.

2011 ◽  
Vol 71-78 ◽  
pp. 4958-4962
Author(s):  
Chun Bi Xu ◽  
Jing Cheng Liu ◽  
Jun Li

The accurate prediction of gas well productivity is an important task in gas reservoir engineering research. According to the global optimization ability of the genetic algorithm (GA) and the superior regression performance of the support vector machine (SVM), this paper proposed a method based on GA and SVM to improve the prediction accuracy. As the proposed model can reduce the dimensionality of data space and preserve features of gas well productivity, compared with BP neural network model, the proposed GA-SVM model for gas well productivity in practical engineering has higher accuracy and speed, the maximum error is 1.5%. Thus, it provided a new method for the forecast of gas well productivity.


Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 193
Author(s):  
Yuchuang Wang ◽  
Guoyou Shi ◽  
Xiaotong Sun

Container ships must pass through multiple ports of call during a voyage. Therefore, forecasting container volume information at the port of origin followed by sending such information to subsequent ports is crucial for container terminal management and container stowage personnel. Numerous factors influence container allocation to container ships for a voyage, and the degree of influence varies, engendering a complex nonlinearity. Therefore, this paper proposes a model based on gray relational analysis (GRA) and mixed kernel support vector machine (SVM) for predicting container allocation to a container ship for a voyage. First, in this model, the weights of influencing factors are determined through GRA. Then, the weighted factors serve as the input of the SVM model, and SVM model parameters are optimized through a genetic algorithm. Numerical simulations revealed that the proposed model could effectively predict the number of containers for container ship voyage and that it exhibited strong generalization ability and high accuracy. Accordingly, this model provides a new method for predicting container volume for a voyage.


2014 ◽  
Vol 1044-1045 ◽  
pp. 688-691
Author(s):  
Ran Zhang ◽  
Jun Zhou ◽  
Cheng Yong Li

BP neural network has been successfully used in the gas well productivity prediction, but as a result of neural network is sensitive to the number of input parameters, we had to ignore some factors that is less important to the gas well productivity. In addition, the existing various productivity prediction method cannot consider the influence of some important qualitative factors. This article integrated the advantages of fuzzy comprehensive evaluation and BP neural network, fuzzy comprehensive evaluation method is used to construct the BP neural network's input matrix, and BP neural network learning function is used to solve the connection weights, so as to achieve the aim of predicting gas production. This method not only can consider as many factors influence on gas well production, ut also can consider qualitative factors, so the forecast results of the new model are more realistically close to the actual production situation of reservoirs.


2021 ◽  
Vol 3 (3) ◽  
pp. 703-715
Author(s):  
Edwin Manhando ◽  
Yang Zhou ◽  
Fenglin Wang

Fungal infection is a pre-harvest and post-harvest crisis for farmers of peanuts. In environments with temperatures around 28 °C to 30 °C or relative humidity of approximately 90%, mold-contaminated peanuts have a considerable likelihood to be infected with Aflatoxins. Aflatoxins are known to be highly carcinogenic, posing danger to humans and livestock. In this work, we proposed a new approach for detection of mold-contaminated peanuts at an early stage. The approach employs the optical coherence tomography (OCT) imaging technique and an error-correcting output code (ECOC) based Support Vector Machine (SVM) trained on features extracted using a pre-trained Deep Convolutional Neural Network (DCNN). To this end, mold-contaminated and uncontaminated peanuts were scanned to create a data set of OCT images used for training and evaluation of the ECOC-SVM model. Results showed that the proposed approach is capable of detecting mold-contaminated peanuts with respective accuracies of approximately 85% and 96% after incubation periods of 48 and 96 h.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 380 ◽  
Author(s):  
Zhufeng Lei ◽  
Wenbin Su

Control of the roll gap of the caster segment is one of the key parameters for ensuring the quality of a slab in continuous casting. In order to improve the precision and timeliness of the roll gap value control, we proposed a rolling gap value prediction (RGVP) method based on the continuous casting process parameters. The process parameters collected from the continuous casting production site were first dimension-reduced using principal component analysis (PCA); 15 process parameters were chosen for reduction. Second, a support vector machine (SVM) model using particle swarm optimization (PSO) was proposed to optimize the parameters and perform roll gap prediction. The experimental results and practical application of the models has indicated that the method proposed in this paper provides a new approach for the prediction of roll gap value.


2012 ◽  
Vol 466-467 ◽  
pp. 1015-1019 ◽  
Author(s):  
Wei Liang Liu ◽  
Yong Guang Ma ◽  
Liang Yu Ma ◽  
Yong Jun Lin ◽  
Shuang Sai Liu

In order to obtain accurate load forecasting of coal-fired unit, a new algorithm based on Support Vector Machine (SVM) method is presented. This algorithm establishes a model to reflect the complicated relation between the load of coal-fired unit and the furnace flame Images. The trained SVM model is applied to a 660MW coal-fired unit to forecast the load with two groups of test samples. The results are compared with that of BP neural network model. It is shown the SVM model is more accurate than the BP NN model. The SVM method can satisfy the demand of engineering applications with the advantages of high forecasting accuracy and more generalized performance.


Author(s):  
Khalid AA Abakar ◽  
Chongwen Yu

This work demonstrated the possibility of using the data mining techniques such as artificial neural networks (ANN) and support vector machine (SVM) based model to predict the quality of the spinning yarn parameters. Three different kernel functions were used as SVM kernel functions which are Polynomial and Radial Basis Function (RBF) and Pearson VII Function-based Universal Kernel (PUK) and ANN model were used as data mining techniques to predict yarn properties. In this paper, it was found that the SVM model based on Person VII kernel function (PUK) have the same performance in prediction of spinning yarn quality in comparison with SVM based RBF kernel. The comparison with the ANN model showed that the two SVM models give a better prediction performance than an ANN model.


2018 ◽  
Vol 1 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Chunxiang Qian ◽  
Wence Kang ◽  
Hao Ling ◽  
Hua Dong ◽  
Chengyao Liang ◽  
...  

Support Vector Machine (SVM) model optimized by K-Fold cross-validation was built to predict and evaluate the degradation of concrete strength in a complicated marine environment. Meanwhile, several mathematical models, such as Artificial Neural Network (ANN) and Decision Tree (DT), were also built and compared with SVM to determine which one could make the most accurate predictions. The material factors and environmental factors that influence the results were considered. The materials factors mainly involved the original concrete strength, the amount of cement replaced by fly ash and slag. The environmental factors consisted of the concentration of Mg2+, SO42-, Cl-, temperature and exposing time. It was concluded from the prediction results that the optimized SVM model appeared to perform better than other models in predicting the concrete strength. Based on SVM model, a simulation method of variables limitation was used to determine the sensitivity of various factors and the influence degree of these factors on the degradation of concrete strength.


2020 ◽  
Vol 15 ◽  
Author(s):  
Yi Zou ◽  
Hongjie Wu ◽  
Xiaoyi Guo ◽  
Li Peng ◽  
Yijie Ding ◽  
...  

Background: Detecting DNA-binding proetins (DBPs) based on biological and chemical methods is time consuming and expensive. Objective: In recent years, the rise of computational biology methods based on Machine Learning (ML) has greatly improved the detection efficiency of DBPs. Method: In this study, Multiple Kernel-based Fuzzy SVM Model with Support Vector Data Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted from protein sequence. Secondly, multiple kernels are constructed via these sequence feature. Than, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs. Results: Our model is test on several benchmark datasets. Compared with other methods, MK-FSVM-SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and PDB2272 (0.5476). Conclusion: We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the classifier for DNA-binding proteins identification.


Sign in / Sign up

Export Citation Format

Share Document