Mechanical Cutting Process of Cutting Robot Based on CAD/CAM Integrated System

2014 ◽  
Vol 716-717 ◽  
pp. 1666-1670
Author(s):  
Jiu Nan Xu ◽  
Zhi Xin Hu ◽  
Ling Xiao Weng

Control problem of mechanical cutting is a development bottleneck of processing technology of robot. As compared to the simple mechanical process, the control process of automatic processing trajectory for cutting robot is relatively complex. This paper uses the CAD/CAM integrated control system to control the robot cutting process, which realizes the integration design of robot machining process. The extraction of G code is through the VC program, and then it uses MATLAB to do data analysis, which completes the design of process parameter for cutting path. Finally we use ADAMS simulation to forecaster the process parameters and machining process, through the analysis of the data it improves the machining accuracy. And it provides a theoretical reference for the research on mechanical automation process.

2010 ◽  
Vol 142 ◽  
pp. 11-15 ◽  
Author(s):  
Y.B. Liu ◽  
C. Zhao ◽  
X. Ji ◽  
Ping Zhou

High-speed cutting process of cutting force influence variables and variation and ordinary speed cutting are obviously different, in order to study the high-speed cutting process of different parameters on the effect of cutting force, based on five axis high-speed NC machining center, using multi-factor orthogonal test method for high speed milling of aluminum alloy impeller conducted experiments. It was analyzed that cutting force influence factors of 5-axises blade machining process. A private clamp was designed and produced, to measure the cutting force of machining process. It was observe that distribution of 3-dimension cutting forces in cutting path. It was found that the distribution rule of cutting force. With the experiment study on cutting force when high speed cutting aluminum cuprum, the influence disciplinarian of each cutting parameter on cutting force was obtained.


2017 ◽  
Vol 868 ◽  
pp. 93-98 ◽  
Author(s):  
Li Jin Fang ◽  
Li Li ◽  
Guo Xun Wang

In order to solve the problem of openness, intelligence and low integration in the current machining robot control system, STEP-NC standard is introduced into the field of robot machining, and defines the STEP-NC data model of industrial robots. The 6R industrial robots are used to build the machining platform and the connection between the machining robot and the CAD / CAM system and the integrated data stream structure are discussed. The key issues involved in the post processing of the machining robot are studied. Taking the 6R robot as an example, the robot prototype system is established, and the kinematics solution in the post-processing process is studied and deduced. The cutting and post-processing system platform of cutting robot was established and the sample art machining was completed. The experimental and simulation results show that the system can complete the machining process of the cutting robot and generate executable robot machining instructions.


2010 ◽  
Vol 29-32 ◽  
pp. 2059-2064
Author(s):  
Jian Hua Guo ◽  
Liang Chu ◽  
Xiao Bing Zhang ◽  
Fei Kun Zhou

In this paper, an integrated system of SAS/ESP is proposed to improve vehicle handling performance and stability. The 15DOF vehicle model which describes the dynamics of the integrated system is established. A fuzzy logic control strategy is presented to control the integrated system. The simulation results show that the integrated control system can obviously improve vehicle maneuverability and ride quality much more than the individual control.


2013 ◽  
Vol 315 ◽  
pp. 278-282
Author(s):  
Noordiana Kassim ◽  
Yusri Yusof ◽  
Mahmod Abd Hakim Mohamad ◽  
Mohd Najib Janon ◽  
Rafizah Mohd Hanifa

To realize the STEP-NC based machining system, it is necessary to perform machining feature extraction, generating machine-specific information, and creating a relationship between STEP-NC entities. A process planning system of a STEP-NC information flow that starts with constructing a machining feature from a CAD model will be developed. In this paper, a further in-depth study of the implementation and adaptation of STEP-NC in manufacturing is studied. This study will help to understand how the data from CAD/CAM can be converted into STEP-NC codes and the machining process will be based on the STEP-NC codes generated.


Author(s):  
Hangzhuo Yu ◽  
Han Zhong ◽  
Yong Chen ◽  
Lei Lin ◽  
Jing Shi ◽  
...  

Large aerospace thin-walled structures will produce deformation and vibration in the machining process, which will cause machining error. In this paper, a cutting experimental method based on multi-layer machining is proposed to analyze the influence of cutting tool, cutting path, and cutting parameters on machining error in order to obtain the optimal cutting variables. Firstly, aiming at the situation that the inner surface of the workpiece deviates from the design basis, the laser scanning method is used to obtain the actual shape of the inner surface, and the method of feature alignment is designed to realize the unification of the measurement coordinate system and machining coordinate system. Secondly, a series of cutting experiments are used to obtain the machining errors of wall thickness under different cutting tools, cutting paths, and cutting parameters, and the variation of machining errors is analyzed. Thirdly, a machining error prediction model is established to realize the prediction of machining error, and the multi-objective optimization method is used to optimize the cutting parameters. Finally, a machining test was carried out to validate the proposed cutting experimental method and the optimal cutting parameters.


Author(s):  
TJ Li ◽  
XH Ding ◽  
K Cheng ◽  
T Wu

Natural frequencies and modal shapes of machine tools have position-dependent characteristics owing to their dynamic behaviors changing with the positions of moving parts. It is time-consuming and difficult to evaluate the dynamic behaviors of machine tools and their machining accuracy at different positions. In this paper, a Kriging approximation model coupled with finite element method is proposed to substitute the dynamic equations for obtaining the position-dependent natural frequencies of a machine tool, as well as relative positions between the tool and the workpiece during the machining process. Based on the proposed method, dynamic performance optimization design of the machine tool is conducted under the condition of minimum relative positions. Three case studies are illustrated to demonstrate the implementation of the proposed method.


Author(s):  
Chunwang Xu ◽  
Shujiang Chen ◽  
Changhou Lu ◽  
Kang Wang ◽  
Jiaheng Sun

Spindle rotation accuracy is important in machining process. Indirect compensation of spindle rotation error has been widely adopted in the field of machining accuracy improvement. However, there are some limitations on indirect compensation, and a little research on direct compensation can be found. This article utilizes active lubrication technology to improve the spindle rotation accuracy. Hydrostatic journal bearing with control recesses and servo valve drove by piezoelectric ceramics are adopted to compose the compensation element. The simple control strategy PID is adopted to provide control signal for servo valve. Both simulation and experiment are designed and conducted. The results show that proposed bearing system has the ability to improve the spindle rotation accuracy.


2021 ◽  
Vol 23 (4) ◽  
pp. 6-20
Author(s):  
Nizami Yusubov ◽  
◽  
Heyran Abbasova ◽  

Introduction. One of the main reasons that modern multi-purpose CNC machines do not use the capabilities of multi-tool processing is the lack of recommendations for design in this direction and, accordingly, for adjustment schemes. The study of the possibilities of multi-tool processing on multi-purpose machines is the subject of the work. The purpose of research: The problem of developing full-factor matrix models of dimensional accuracy and its sensitivity to the machining process is considered to increase the machining efficiency while ensuring machining accuracy using the technological capabilities of multi-tool machining on modern multi-purpose CNC machines. For this purpose, full-factor matrix models of the size scattering fields performed on multi-tool double-carriage adjustments have been developed, taking into account the cases of processing parts with dimensions that differ sharply in different directions, which are often encountered in practice, and in this case, the significant influence of the turns of the workpiece on the processing error, especially in directions with sharply different overall dimensions. Results of research: The developed accuracy models make it possible to calculate not only plane-parallel displacements of the technological system for double-carriage adjustments, but also angular displacements around base points, take into account the combined effect of many factors – a complex characteristic of the subsystems of the technological system (plane-parallel matrix of compliance and angular matrix of compliance), the geometry of the cutting tool , the amount of bluntness of the tool, cutting conditions, etc. As a result, based on the developed accuracy models, it is possible to obtain several ways to control multi-tool machining, including improving the structure of multi-tool adjustments, calculating the limiting values of cutting conditions. Based on the developed full-factor matrix models, it became possible to develop recommendations for the design of adjustments and the creation of an automated design system for multi-tool machining for a group of modern multi-purpose CNC lathes. Scope of the results: The results obtained can be used to create mathematical support for the design of operations in CAD-systems provided for multi-tool multi-carriage machining performed on multi-purpose machines. Conclusions: The developed models and methodology for simulating the machining accuracy make it possible to increase the accuracy and efficiency of simultaneous machining, to predict the machining accuracy within the specified conditions.


Author(s):  
Salman Pervaiz ◽  
Sathish Kannan ◽  
Ibrahim Deiab ◽  
Hossam Kishawy

Metal-cutting process deals with the removal of material using the shearing operation with the help of hard cutting tools. Machining operations are famous in the manufacturing sector due to their capability to manufacture tight tolerances and high dimensional accuracy while simultaneously maintaining the cost-effectiveness for higher production levels. As metal-cutting processes consume a great amount of input resources and generate some material-based waste streams, these processes are highly criticized due to their high and negative environmental impacts. Researchers in the metal-cutting sector are currently exploring and benchmarking different activities and best practices to make the cutting operation environment friendly in nature. These eco-friendly practices mainly cover the wide range of activities directly or indirectly associated with the metal-cutting operation. Most of the literature for sustainable metal-cutting activities revolves around the sustainable lubrication techniques to minimize the negative influence of cutting fluids on the environment. However, there is a need to enlarge the assessment domain for the metal-cutting process and other directly and indirectly associated practices such as enhancing sustainability through innovative methods for workpiece and cutting tool materials, and approaches to optimize energy consumption should also be explored. The aim of this article is to explore the role of energy consumption and the influence of workpiece and tool materials towards the sustainability of machining process. The article concludes that sustainability of the machining process can be improved by incorporating different innovative approaches related to the energy and tool–workpiece material consumptions.


Author(s):  
Hao Tong ◽  
Jing Cui ◽  
Yong Li ◽  
Yang Wang

In 3D scanning micro electro discharge machining (EDM), the CAD/CAM systems being used in mechanical milling of numerical control (NC) are unable to be applied directly due to the particularity of tool electrode wear. Based on industry computer and RT-Linux software platform, a CAD/CAM integration system of 3D micro EDM is developed. In the developed CAD/CAM integration system, the hardware includes mainly a micro feed mechanism for servo control, XY worktable, a high frequency pulse power supply, monitoring circuits etc., and the functions consist of model design, scanning path planning and simulation, NC code generation and post processing, real-time compensating of tool electrode wear, and machining control of states and process. The method of double buffer storage is adopted to transmit numbers of NC machining data. Servo scanning EDM method is used to realize real-time electrode wear compensating and thereby 3D micro structures are machined automatically. The machining experiments are made about model design, parameters optimizing, and process control. The typical 3D micro structures with space curved surfaces and lines have been machined such as micro prism, micro half tube, camber correlation line, and so on. The machining process and results show that the CAD/CAM integration system has the characters of higher real-time, reliability, and general using.


Sign in / Sign up

Export Citation Format

Share Document