Combustion Behaviors of a Compression-Ignition Engine Fueled with Biodiesel at Different Fuel Delivery Advance Angles

2015 ◽  
Vol 730 ◽  
pp. 279-282
Author(s):  
Jie Zang ◽  
Rong Fu Zhu ◽  
De Sheng Zhang

The performance of engine fueled with biodiesel was tested. It was indicated from the experimental results that NOx emission of biodiesel reduced significantly with decreasing fuel delivery advance angle BTDC, while soot emission also reduced when the fuel delivery timing was retarded for 2°CA, and the starting position of heat release rate retarded with the delay of fuel delivery timing. It can be concluded that, retarding fuel delivery timing was an effective method to reduce the NOx emission of engine fueled with biodiesel, but led to reduce the brake power output slightly.

2015 ◽  
Vol 730 ◽  
pp. 283-286
Author(s):  
Rong Fu Zhu ◽  
Yun Long Wang ◽  
Hui Wang ◽  
Yuan Tao Sun

The performance of engine fueled with diesel/biodiesel blends was tested. It was indicated from the experimental results that the brake power, torque out and brake specific fuel consumption of engine fueled with diesel/biodiesel caused slight variations, while NOx emission increased significantly compared with engine fueled with diesel. In order to reduce NOx emission of engine fueled with pure biodiesel, retarding fuel delivery advance angle was used, and the NOx emission tests revealed that the NOx emission decreased significantly at different engine speeds.


2021 ◽  
Vol 54 (20) ◽  
pp. 826-833
Author(s):  
Saeid Shahpouri ◽  
Armin Norouzi ◽  
Christopher Hayduk ◽  
Reza Rezaei ◽  
Mahdi Shahbakhti ◽  
...  

Author(s):  
Jianjun Zhu ◽  
Peng Li ◽  
Yufeng Xie ◽  
Xin Geng

The effects of compression ratio and fuel delivery advance angle on the combustion and emission characteristics of premixed methanol charge induced ignition by Fischer Tropsch diesel engine were investigated using a CY25TQ diesel engine. In the process of reducing the compression ratio from 16.9 to 15.4, the starting point of combustion is fluctuating, the peak of in-cylinder pressure and the maximum pressure increase rate decrease by 44.5% and 37.7% respectively. The peak instantaneous heat release rate increases by 54.4%. HC and CO emissions are on a rising trend. NOx and soot emissions were greatly decreased. The soot emission has the biggest drop of 50%. Reducing the fuel delivery advance angle will make the peak of in-cylinder pressure and the peak of pressure rise rate increase while the peak of heat release rate decreases. The soot emission is negatively correlated with the fuel delivery advance angle. When the fuel delivery advance angle is 16° CA, the soot emissions increased the most by 130%.


1999 ◽  
Author(s):  
Y. Kawabata ◽  
K. Nakagawa ◽  
F. Shoji

Abstract Recently, a new design of engine combustion that achieves higher efficiency and less NOx emission has been proposed. Some researchers have started studying the concept, which is called Homogeneous Charge Compression Ignition (HCCI), but there have been few reports on investigations using a future prospective alternative fuel, natural gas. In this study, natural gas fueled operation of HCCI using a single cylinder gas engine was conducted. Operating and exhaust characteristics were obtained. Experimental data confirmed the potential of higher efficiency and less NOx emission, though THC and CO were higher. Based on these data, the feasibility of this concept for gas engines is also examined.


Main objective of the work was to investigate the output like emission from compression ignition engine which has been run by diesel as well as the blends of biogas with diesel. Volume flow rate of biogas with petrol as a major parameter to reach the expected outcome. The engine was operated with diesel, and blends of biogas 15%, 25% and 35% with petrol. The study focused on the variation of outputs hydrocarbon, carbon monoxide(CO) Nitrous oxides(NOX) and smoke for the brake power generated by the engine. The engine exhibits better results when the proportion of biogas was increased.


Sign in / Sign up

Export Citation Format

Share Document