Laboratory Investigation of the High Temperature Rheological Property of Activated Coal Gangue Modified Asphalt Binder

2015 ◽  
Vol 744-746 ◽  
pp. 1261-1265 ◽  
Author(s):  
Xiao Kai Yang ◽  
Rui Xiong ◽  
Fa Yang ◽  
Hui Qing Yin ◽  
Tao Yang

The coal gangue is one of the largest industrial solid waste emissions in our country at present, the research about making coal gangue as the filler to modify the properties of asphalt is still blank both at home and abroad. Using rotational viscosity test and dynamic shear rheological test (DSR) to study the high temperature rheological properties of the activated coal gangue modified asphalt binder when under the condition of different filler-bitumen ratio, and compared with mineral powder modified asphalt binder; Based on this, explores the mechanism of coal gangue modified asphalt binder. The results show that the activated coal gangue instead of mineral powder can make the high temperature performance of asphalt binder increases sharply. Research results provide feasible basis of activated coal gangue mineral powder can instead of mineral powder improving the high temperature rheological performance of asphalt binder.

2016 ◽  
Vol 34 (21) ◽  
pp. 1783-1789 ◽  
Author(s):  
Aliasghar Akbari Nasrekani ◽  
Koorosh Naderi ◽  
Mostafa Nakhaei ◽  
Nader Mahmoodinia

2011 ◽  
Vol 415-417 ◽  
pp. 1466-1469
Author(s):  
Jian Ping Zhu ◽  
Jian Wu Zhang ◽  
Song Hai Zhao ◽  
Dong Xu Li

The mineral structure and hydration activity changes of the Jiyuan gangue calcined at different temperatures were studied in the paper. Differential scanning calorimeter (DSC), X-ray diffraction (XRD) testing, strength testing of cement and Microhardness analysis methods were used to study the thermal activation of coal gangue mineral composition, and macroscopic characterization of the activity of heat-activated coal gangue. The results showed that after heat activation, the destruction of the gangue can be effective in the silicon-oxygen bond, aluminum-oxygen bond, forming amorphous material, and thereby enhanced the activity of coal gangue. Best thermal activation process conditions of Jiyuan gangue is calcined at 800°C for 2h. Adding 40% of the heat-activated coal gangue Activated at this condition to cement, the compressive strength than the same dosage as is the compressive strength of coal gangue increased 106%.


2020 ◽  
Vol 230 ◽  
pp. 117063 ◽  
Author(s):  
Junfeng Gao ◽  
Hainian Wang ◽  
Chaochao Liu ◽  
Dongdong Ge ◽  
Zhanping You ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Mohammad Ali Notani ◽  
Ali Arabzadeh ◽  
Sajjad Satvati ◽  
Mahmood Tarighati Tabesh ◽  
Navid Ghafari Hashjin ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 52
Author(s):  
Xue Xue ◽  
Junfeng Gao ◽  
Jiaqing Wang ◽  
Yujing Chen

This research aims to explore the high-temperature and low-temperature performances of lignin–waste engine oil-modified asphalt binder and its mixture. For this research, the lignin with two contents (4%, 6%) and waste engine oil with two contents (3%, 5%) were adopted to modify the control asphalt binder (PG 58-28). The high-temperature rheological properties of the lignin–waste engine oil-modified asphalt binder were investigated by the viscosity obtained by the Brookfield viscometer and the temperature sweep test by the dynamic shear rheometer. The low-temperature rheological property of the lignin–waste engine oil-modified asphalt binder was evaluated by the stiffness and m-value at two different temperatures (−18 °C, −12 °C) obtained by the bending beam rheometer. The high-temperature and the low-temperature performances of the lignin–waste engine oil-modified asphalt mixture were explored by the rutting test and low-temperature bending beam test. The results displayed that the rotational viscosity and rutting factor improved with the addition of lignin and decreased with the incorporation of waste engine oil. Adding the lignin into the control asphalt binder enhanced the elastic component while adding the waste engine oil lowered the elastic component of the asphalt binder. The stiffness of asphalt binder LO60 could not meet the requirement in the specification, but the waste engine oil made it reach the requirement based on the bending beam rheometer test. The waste engine oil could enhance the low-temperature performance. The dynamic stabilities of LO40- and LO60-modified asphalt mixture increased by about 9.05% and 17.41%, compared to the control mixture, respectively. The maximum tensile strain of LO45 and LO65 increased by 16.39% and 25.28% compared to that of LO40 and LO60, respectively. The high- and low-temperature performances of the lignin–waste engine oil-modified asphalt LO65 was higher than that of the control asphalt. The dynamic stability had a good linear relationship with viscosity, the rutting factor of the unaged at 58 °C, and the rutting factor of the aged at 58 °C, while the maximum tensile strain had a good linear relationship with m-value at −18 °C. This research provides a theoretical basis for the further applications of lignin–waste engine oil-modified asphalt.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1427
Author(s):  
Xiaoming Wu ◽  
Chichun Hu

Utilization of waste corn stalks (CS) has seized extensive attention due to high annual output and hazardous impact of piling aside or direct combustion on environment. However, previously there has been a lot of emphasis on improvement of its energy efficiency as solid fuel while limited investigations are available which explore the possibility of applying corn stalks as performance enhancer in asphalt binder. The purpose of this study is to examine the potential of employing hydrochar as modifiers in asphalt binder by a series of experimental tests. In this study, two hydrochar were produced from corn stalks by a novel process called hydrothermal carbonization at a different reaction temperature. The two hydrochar and their responding hydrochar-modified asphalt (HCMA) were tested by chemical and rheological tests. Chemical analysis detected the interaction between hydrochar and binder factions, resulting in poor compatibility but satisfying anti-aging property. Even though hydrochar increased the viscosity of bitumen, implying worse workability, and caused poor storage stability, ameliorated performance of asphalt binder at high temperature by incorporating hydrochar was verified by various criteria such as higher performance grade (PG) failure temperature and lower non-recoverable creep compliance (Jnr). Moreover, higher reaction temperature makes hydrochar’s particles smaller and more homogeneous, which results in slightly lower enhanced high temperature performance, more satisfying workability, better storage stability, and greater anti-aging effect of hydrochar-modified asphalt. Eventually, this study provided a promising win-win solution to environment problems concerning corn stalk treatment and shortage of asphalt binder. Further exploration of methods to improve HCMA’s storage stability, real-scale corroboration on trial section and life cycle assessment of asphalt pavement containing hydrochar modifiers will be followed in the future.


Sign in / Sign up

Export Citation Format

Share Document