Evolution of Robust Manufacturing Process in Machining of DC Motor Commutator Using Complementing Problem Solving Tools

2015 ◽  
Vol 766-767 ◽  
pp. 1183-1189
Author(s):  
A.J. Jagadeesan ◽  
L. Karunamoorthy ◽  
N. Arunkumar

Machining the mica insulation in commutator to provide under cut in the surface of contact with the carbon brush is a vital process related to the life of the product. Complete removal of mica in the contact surface is essential and this requires complex sensing and positioning of the thin mica layer during machining. This study revealed improving the sensing and positioning technologies is not adequate and evolved a robust product-process design to overcome the real root cause of variations in the manufacturing process. Combined use of orthogonal array, Shainin technique, physical-mechanism analysis, relations-diagram and evaporating-cloud method complemented the problem solving approach in gaining knowledge and evolving robustness.

Author(s):  
Miao Li ◽  
Xinguo Ming ◽  
Maokuan Zheng ◽  
Lina He ◽  
Zhitao Xu

Process trimming (also can be called as trimming for process) helps to trim and eliminate process operations by redistributing their functions among other operations. It offers one way to eliminate key disadvantages in product and manufacturing process that other methods do not see. However, few methods have been disclosed in a structured way for process trimming effectively. Therefore, this article proposes an integrated process focused on technological process and product innovation to solve the key problems with process trimming-based TRIZ (theory of inventive problem-solving) approach. This method helps to identify and inventively solve the key problems and maximize use resource of system and supersystem. First, process trimming candidates are identified based on component function model, component trimming rules, process function model analysis, component–process interaction matrix, and root cause analysis. Then, three types of process trimming strategies are presented. Algorithm of process trimming is developed to identify key problems in technological process. TRIZ problem-solving tools are used to solve these key problems. Finally, a case study of refrigerator door foam innovative design and manufacturing process is investigated to test the efficiency of the approach. The innovative solution significantly decreases manufacturing defects and service cost.


Author(s):  
Ghim Boon Ang ◽  
Chen Changqing ◽  
Hui Peng Ng ◽  
Alfred Quah ◽  
Nagalingam Dayanand ◽  
...  

Abstract This paper placed a strong emphasis on the importance of applying Systematic Problem Solving approach, deep dive and use of right/appropriate FA approach/tools that are essentially critical to FA analysts to understand the “real” root cause. A case of low yield with polar failing pattern was seen and matched well with the Al Pad etch E chuck configuration. Customer also reported of passivation crack issue at the solder bumps. All these evidences suggested the root cause was related to wafer fabrication issue. However, it was through a strong “inquisitive” mindset coupled with the essence of such strong problem solving approach that led to uncover the actual root cause. Although customer test condition was not able to be duplicated due to limited information available in foundry industry, a four point probing alternative method was engaged to overcome this limitation. Unlike typical case, the AlOx thickness was comparable for bad and good dies. Further in depth analysis subsequently revealed the higher O content in the AlOx for the bad dies that was the real culprit for the higher bump resistance. This paper highlights the job of FA analyst is not simply finding defect but also plays a catalyst role in root cause/failure mechanism understanding by providing supporting FA evidence (electrically / physically) to Fab. It would serve as a good reference to wafer Fab that encountered such issue.


2013 ◽  
Vol 397-400 ◽  
pp. 57-61
Author(s):  
Dong Jie Zhong

Green manufacturing process is a key segment to guarantee green degree of products manufacturing course. In this paper, a kind of design system is presented by analyzing the function demand of the design system for green manufacturing process and then the modules which constituent the design system are analyzed in detail. Moreover, according to the design principle and the estimate indexes of green manufacturing process, the operation flow of the design system is introduced.


Author(s):  
Jesse D. Peplinski ◽  
Janet K. Allen ◽  
Farrokh Mistree

Abstract How can the manufacturability of different product design alternatives be evaluated efficiently during the early stages of concept exploration? The benefits of such integrated product and manufacturing process design are widely recognized and include faster time to market, reduced development costs and production costs, and increased product quality. To reap these benefits fully, however, one must examine product/process trade-offs and cost/schedule/performance trade-offs in the early stages of design. Evaluating production cost and lead time requires detailed simulation or other analysis packages which 1) would be computationally expensive to run for every alternative, and 2) require detailed information that may or may not be available in these early design stages. Our approach is to generate response surfaces that serve as approximations to the analyses packages and use these approximations to identify robust regions of the design space for further exploration. In this paper we present a method for robust product and process exploration and illustrate this method using a simplified example of a machining center processing a single component. We close by discussing the implications of this work for manufacturing outsourcing, designing robust supplier chains, and ultimately designing the manufacturing enterprise itself.


Author(s):  
George Chryssolouris ◽  
Dimitris Mavrikios ◽  
Dimitris Fragos ◽  
Vassiliki Karabatsou

2018 ◽  
Vol 26 ◽  
pp. 1388-1397 ◽  
Author(s):  
Brian K. Paul ◽  
Patrick McNeff

Sign in / Sign up

Export Citation Format

Share Document