Modeling of a Filled Cylindrical Tank and the Dynamic Analysis of its Eigenfrequencies

2015 ◽  
Vol 769 ◽  
pp. 212-217
Author(s):  
Norbert Jendzelovsky ◽  
Lubomir Balaz

This paper deals with a problem of eigenfrequencies of filled cylindrical tank rested on elastic foundation. For an ANSYS analysis of eigenfrequencies some numerical models of gravel subgrade are used and finally results got by these models are compared. In final part of the paper some crucial results are presented both in a graphical and numerical way.

2014 ◽  
Vol 617 ◽  
pp. 148-151 ◽  
Author(s):  
Norbert Jendzelovsky ◽  
Lubomír Baláž

This paper deals with a problem of eigenfrequencies of cylindrical tank (steel water tank). For an ANSYS analysis of eigenfrequencies some numerical models of cylindrical tank are used and finally results got by these models are compared with experimental results in laboratory. In final part of the paper some crucial results are presented both in a graphical and numerical way.


2014 ◽  
Vol 969 ◽  
pp. 249-252 ◽  
Author(s):  
Norbert Jendzelovsky ◽  
Lubomír Baláž

In this article the design and construction of a gravel base under the cylindrical tank have been presented. Three numerical models of gravel base have been created and compared. ANSYS software has been used for analysis of deformations and bending moments. In final part of the paper, calculation of natural frequencies of cylindrical tank rested on Type 1 gravel base has been presented.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Trung Thanh Tran ◽  
Quoc-Hoa Pham ◽  
Trung Nguyen-Thoi

The paper presents the extension of an edge-based smoothed finite element method using three-node triangular elements for dynamic analysis of the functionally graded porous (FGP) plates subjected to moving loads resting on the elastic foundation taking into mass (EFTIM). In this study, the edge-based smoothed technique is integrated with the mixed interpolation of the tensorial component technique for the three-node triangular element (MITC3) to give so-called ES-MITC3, which helps improve significantly the accuracy for the standard MITC3 element. The EFTIM model is formed by adding a mass parameter of foundation into the Winkler–Pasternak foundation model. Two parameters of the FGP materials, the power-law index (k) and the maximum porosity distributions (Ω), take forms of cosine functions. Some numerical results of the proposed method are compared with those of published works to verify the accuracy and reliability. Furthermore, the effects of geometric parameters and materials on forced vibration of the FGP plates resting on the EFTIM are also studied in detail.


2019 ◽  
Vol 817 ◽  
pp. 317-324
Author(s):  
Elena Zanazzi ◽  
Eva Coïsson ◽  
Daniele Ferretti ◽  
Alessio Lorenzelli

The May 2012 Emilia earthquake has highlighted the important vulnerability of masonry spires at the top of bell towers of churches. Indeed, almost half of those in the epicentral area have shown a typical damage mechanism consisting in the shear sliding and overturning of the top of the spire. Given the recurrence of this phenomenon, the present paper tries to provide a contribution to the comprehension of the seismic behaviour of the spires through the numerical analysis of three case studies. In particular, the work analyses the spires of the churches of San Nicola di Bari in Cortile, near Carpi (MO); Sant'Egidio in Cavezzo (MO), and Sant'Agostino in Sant'Agostino (FE). The numerical models of these masonry structures were made using Abaqus Finite Element software. After the creation of the three-dimensional geometric models, a first nonlinear static analysis of the entire bell tower was performed adopting for masonry the Abaqus “concrete damage plasticity model”. Once the stability of the bell tower was verified for dead loads, the non-linear time-step dynamic analysis was faced. This required the definition of the seismic input at the base of the tower, through the accelerograms recorded by the closest stations. The nonlinear dynamic analysis of the global model of the bell tower provided the floor response spectra at the base and at the top of the spire. Indeed the comparison between spectra at the ground and at the top highlights the filter effect of the stem of the bell tower with a significant increase in accelerations at the top. This effect may explain the widespread damage observed at the top of the spires. Eventually, three different non-invasive intervention techniques were proposed in compliance with the principles of restoration and were modelled to compare their behaviour.


Author(s):  
Annalisa Greco ◽  
Ilaria Fiore ◽  
Giuseppe Occhipinti ◽  
Salvatore Caddemi ◽  
Daniele Spina ◽  
...  

Dynamic analyses and seismic assessments of multi-storey buildings at urban level require large-scale simulations and computational procedures based on simplified but accurate numerical models. At this aim the present paper propos-es an equivalent non-uniform beam-like model, suitable for the dynamic analysis of buildings with asymmetric plan and non-uniform vertical distribution of mass and stiffness. The equations of motion of this beam-like model, which pre-sents only shear and torsional deformability, are derived through the application of Hamilton’s principle. The linear dy-namic behaviour is evaluated by discretizing the continuous non-uniform model according to a Rayleigh-Ritz approach based on a suitable number of modal shapes of the uniform shear-torsional beam. In spite of its simplicity, the model is able to reproduce the dynamic behaviour of low- and mid-rise buildings with a significant reduction of the computa-tional burden with respect to that required by more general models. The efficacy of the proposed approach has been tested, by means of comparisons with linear FEM simulations, on three multi-storey buildings characterized by different irregularities. The satisfactory agreement, in terms of natural frequencies, modes of vibration and seismic response, proves the capability of the proposed approach to reproduce the dynamic response of complex spatial multi storey frames.


Sign in / Sign up

Export Citation Format

Share Document