scholarly journals Effects of Nozzle Diameter on the Spray Characteristics of Premix Injector in Burner System

2015 ◽  
Vol 773-774 ◽  
pp. 570-574
Author(s):  
Shahrin Hisham Amirnordin ◽  
Salwani Ismail ◽  
Ronny Yii Shi Chin ◽  
Norani Mansor ◽  
Mas Fawzi ◽  
...  

An essential component of the injector nozzle geometry is to see the results spray atomization and mixture formation of the fuel-air combustion to improve performance, and reduce pollution from a burner. Studies involving the injectors in the combustion burner are still in a small proportion, particularly in the premix injector type. Thus, this study involves the efforts to determine the appropriate diameter of the premix injector where the injector spray characteristics is produced by using Computational Fluid Dynamics (CFD). Multiphase of the volume of fluid (VOF) cavitations flow in the nozzle is determined through steady simulation while Eulerian-Eulerian two-fluid approach is used for performing mixing of Jatropha oil and air. Further simulation is conducted using a spray with a discrete phase injection at the outflow hole injector nozzle. The investigation involves the modification of nozzle geometry on three different sizes of 0.8 mm, 1.0 mm and 1.5 mm with the analysis focused on nozzle flow characteristics of the injector. The results indicate that a small changes in injector gives high impact to the spray and combustion of a burner. This shows the importance of nozzle dimensions which influences the nozzle flow and affects the spray characteristics, hence influence the combustion and emission of the burner system.

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Xinhai Li ◽  
Yong Cheng ◽  
Xiaoyan Ma ◽  
Xue Yang

The inner-flow of gasoline direct injection (GDI) injector nozzles plays an important role in the process of spray, and affects the mixture process in gasoline engine cylinder. The nozzle structure also affects the inner-flow of GDI injector. In order to obtain uniform performance of GDI injector, the size consistency of injector nozzle should be ensured. This paper researches the effect of nozzle length and diameter on the inner flow and analyzes the sensitivity of inner flow characteristics to these structural parameters. First, this paper reveals the process of inception, development, and saturated condition of cavitation phenomenon in injector nozzle. Second, the inner-nozzle flow characteristics are more sensitive to small diameter than large diameter under the short nozzle length, while the sensitivity of the inner-nozzle flow characteristics to large nozzle diameter becomes strong as the increase of the nozzle length. Finally, the influence of nozzle angle on the injection mass flow is studied, and the single nozzle fuel mass will increase as the decrease of nozzle angle α. And the sensitivity of inner-flow characteristic to nozzle angle becomes strong as the decrease of α.


Author(s):  
Katharina Warncke ◽  
Amsini Sadiki ◽  
Max Staufer ◽  
Christian Hasse ◽  
Johannes Janicka

Abstract Predicting details of aircraft engine combustion by means of numerical simulations requires reliable information about spray characteristics from liquid fuel injection. However, details of liquid fuel injection are not well documented. Indeed, standard droplet distributions are usually utilized in Euler-Lagrange simulations of combustion. Typically, airblast injectors are employed to atomize the liquid fuel by feeding a thin liquid film in the shear zone between two swirled air flows. Unfortunately, droplet data for the wide range of operating conditions during a flight is not available. Focusing on numerical simulations, Direct Numerical simulations (DNS) of full nozzle designs are nowadays out of scope. Reducing numerical costs, but still considering the full nozzle flow, the embedded DNS methodology (eDNS) has been introduced within a Volume of Fluid framework (Sauer et al., Atomization and Sprays, vol. 26, pp. 187–215, 2016). Thereby, DNS domain is kept as small as possible by reducing it to the primary breakup zone. It is then embedded in a Large Eddy Simulation (LES) of the turbulent nozzle flow. This way, realistic turbulent scales of the nozzle flow are included, when simulating primary breakup. Previous studies of a generic atomizer configuration proved that turbulence in the gaseous flow has significant impact on liquid disintegration and should be included in primary breakup simulations (Warncke et al., ILASS Europe, Paris, 2019). In this contribution, an industrial airblast atomizer is numerically investigated for the first time using the eDNS approach. The complete nozzle geometry is simulated, considering all relevant features of the flow. Three steps are necessary: 1. LES of the gaseous nozzle flow until a statistically stationary flow is reached. 2. Position and refinement of the DNS domain. Due to the annular nozzle design the DNS domain is chosen as a ring. It comprises the atomizing edge, where the liquid is brought between inner and outer air flow, and the downstream primary breakup zone. 3. Start of liquid fuel injection and primary breakup simulation. Since the simulation of the two-phase DNS and the LES of the surrounding nozzle flow are conducted at the same time, turbulent scales of the gas flow are directly transferred to the DNS domain. The applicability of eDNS to full nozzle designs is demonstrated and details of primary breakup at the nozzle outlet are presented. In particular a discussion of the phenomenological breakup process and spray characteristics is provided.


2015 ◽  
Vol 773-774 ◽  
pp. 450-454
Author(s):  
Ronny Yii Shi Chin ◽  
Shahrin Hisham Amirnordin ◽  
Amir Khalid

The burner system is a patented, unique, higher-efficiency and fuel-injector system that works with a specially designed oil burner to create ultra-efficient combustion that reduces oil use, greenhouse gases and other harmful emissions. This research shows the injector nozzle geometries play a significant role in spray characteristics, atomization and formation of fuel-air mixture in order to improve combustion performance, and decrease some pollutant products from burner system. The aim of this research is to determine the effects of nozzle hole shape on spray characteristics of the premix injector by using CFD. Multiphase of volume of fluid (VOF) cavitating flow inside nozzles are determined by means of steady simulations and Eulerian-Eulerian two-fluid approach is used for performing mixing of Jatropha oil and air. Nozzle flow simulations resulted that cavitation area is strongly dependent on the nozzle hole shape. Conical hole with k-factor of 2 provides higher flow velocity and turbulent kinetic energy compared with conical hole with k-factor of 1.3 and cylindrical hole. The results show that the premix injector nozzle hole shape gives impact to the spray characteristics and indirectly affects the emission of the system.


2012 ◽  
Vol 256-259 ◽  
pp. 2602-2605
Author(s):  
W.L. Wei ◽  
X.J. Zhao ◽  
Y. L. Liu

In this paper, a numerical two-fluid flow model combining with the Realizable k–ε turbulent model for compressible viscous fluid is presented for the computation of flow characteristics in an aeration tank; and the equations are solved with the finite volume method. A multigrid technique based on the full approximation storage (FAS) scheme is employed to accelerate the numerical convergence. The numerical results for velocity and turbulent kinetic energy distribution in the aeration tank are obtained. It is shown that the Computational Fluid Dynamics (CFD) is a valuable tool to analyze the interaction of flow field and aeration.


2015 ◽  
Author(s):  
Po-Wen Tu ◽  
Hongming Xu ◽  
Dhananjay Kumar Srivastava ◽  
Karl Dean ◽  
Daliang Jing ◽  
...  

2017 ◽  
pp. 144-150
Author(s):  
Peter W. Rein ◽  
M. Getaz ◽  
A. Raghunandan ◽  
N. du Pleissis ◽  
H. Saleh ◽  
...  

A new design for syrup and juice clarifiers is presented. The design takes advantage of the considerably improved performance of clarifiers incorporating lamella plates, and the reasons for the improvement are outlined. Computational fluid dynamics (CFD) work done to simulate the performance is summarised. This design enables the residence time to be dramatically reduced and the simplified design leads to cheaper and better clarifiers. Practical experience with factory scale units is described, confirming the good flow characteristics. The results of preliminary test work on a factory syrup clarifier are presented, which is also shown to operate efficiently as a phosphatation clarifier. In addition the performance of a full-scale juice clarifier has been evaluated and compared with the performance of a Rapidorr clarifier. This work confirms the considerable advantages which this type of design provides, in realising substantial reductions in residence time, capital costs and operating costs.


Sign in / Sign up

Export Citation Format

Share Document