Impact of Inverter Controller on Efficiency and Islanding of Photovoltaic Distributed Generation

2015 ◽  
Vol 785 ◽  
pp. 167-171
Author(s):  
Saidu Kumo Mohammed ◽  
Norman Mariun ◽  
Mohd Amran Mohd Radzi ◽  
Noor Izzri Abdul Wahab

The increasing penetration of photovoltaic (PV) Distributed Generation (DG) systems in the electric power distribution system necessitates the development of power electronics inverter to interface the PV DG with the grid. The output parameters of the DG are determined by the inverter control strategy. An open-loop control (NCTRL) and two close-loop controls; Constant-Current Control (CCC) and Constant-Power Control (CPC) were considered for the inverter. The impact of inverter control techniques are compared based on power transformation efficiency and islanding behaviour of the DG. A grid-connected PV DG and the control techniques were simulated using MATLAB Simulink. A mathematical formulation of the inverter islanding voltage at the point of common coupling was driven and validated by simulation. Results indicated that a closed loop control of inverter is essential for maximum efficiency and stability of DG in post islanding

Author(s):  
Zuhaila Mat Yasin ◽  
Izni Nadhirah Sam’ón ◽  
Norziana Aminudin ◽  
Nur Ashida Salim ◽  
Hasmaini Mohamad

<p>Monitoring fault current is very important in power system protection. Therefore, the impact of installing Distributed Generation (DG) on the fault current is investigated in this paper. Three types of fault currents which are single line-to-ground, double line-to-ground and three phase fault are analyzed at various fault locations. The optimal location of DG was identified heuristically using power system simulation program for planning, design and analysis of distribution system (PSS/Adept). The simulation was conducted by observing the power losses of the test system by installing DG at each load buses. Bus with minimum power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.</p>


2014 ◽  
Vol 986-987 ◽  
pp. 187-191
Author(s):  
Bo Zeng ◽  
Kai Wang ◽  
Xiang Yu Kong ◽  
Yi Zeng ◽  
Qun Yang

With high penetration of distributed generation connected to the grid, distribution system will have some huge impacts, and system reliability calculation models and assessment methods are changing. Based on Monte-Carlo method, a heuristic reliability analysis method for distribution system with distributed generations was proposed in the paper, which focuses on the mode of distributed generation in parallel to system power supply. Functional role of distributed generation in the power distribution system failure and distributed power adapter with load strategies were analyzed in this method. Cases simulation analysis was used to verify its effectiveness.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Adeseye Amos Ogunsina ◽  
Moses Omolayo Petinrin ◽  
Olutomilayo Olayemi Petinrin ◽  
Emeka Nelson Offornedo ◽  
Joseph Olawole Petinrin ◽  
...  

AbstractA system of power generation whereby the generating equipment is located close to the point of usage, thereby reducing losses and operation cost is called distributed generation (DG). However, it is imperative that DGs are sited such that the quality of power delivered is optimized and the total real power loss within the system minimized. This paper proposes an approach for optimum sizing and siting of DGs sizing in a power distribution system using Ant Colony Optimization (ACO) algorithm. To validate the algorithm the IEEE 30 bus standard test system was employed. A 92% decrease in real power loss within the system relative to the value before the connection of DGs was observed, while the minimum bus voltage increased from 0.656 per unit to 0.965 per unit. The results obtained from ACO are further verified by creating an ETAP model of the IEEE 30 bus system and simulating the impact of DG on the system. A significant reduction in total real power losses within the system and improvement in voltage profile was observed when the DGs are placed at the ACO derived sites relative to at other locations. Therefore, Ant Colony Algorithm can be used in deriving the optimum sites and sizes of DGs in a power distribution system.


2016 ◽  
Vol 40 (3) ◽  
pp. 762-775 ◽  
Author(s):  
Aditi Chatterjee ◽  
Kanungobarada Mohanty ◽  
Vinaya Sagar Kommukuri ◽  
Kishor Thakre

Acknowledgement of renewable sources of energy as substitute energy sources for power production has expanded the number of distributed generation plants being incorporated into the conventional power distribution system. The single-phase voltage source inverter allying the photovoltaic plant with the grid has to address various issues identified with the quality of current injected into the grid, output power factor and power exchange between the plant and the grid. This paper concentrates on the investigation, design and implementation of a digital predictive current control technique known as the model predictive current controller for the control of single-phase photovoltaic distributed generation plants. The performance of the controller is evaluated under varied operating conditions. The proposed current controller is compared with the conventional proportional–integral controller in terms of its design methodology, steady state and dynamic response. The simulation and experimental results validates the effectiveness of the proposed model predictive current controller.


2020 ◽  
Vol 11 (1) ◽  
pp. 285
Author(s):  
Runze Wu ◽  
Jinxin Gong ◽  
Weiyue Tong ◽  
Bing Fan

As the coupling relationship between information systems and physical power grids is getting closer, various types of cyber attacks have increased the operational risks of a power cyber-physical System (CPS). In order to effectively evaluate this risk, this paper proposed a method of cross-domain propagation analysis of a power CPS risk based on reinforcement learning. First, the Fuzzy Petri Net (FPN) was used to establish an attack model, and Q-Learning was improved through FPN. The attack gain was defined from the attacker’s point of view to obtain the best attack path. On this basis, a quantitative indicator of information-physical cross-domain spreading risk was put forward to analyze the impact of cyber attacks on the real-time operation of the power grid. Finally, the simulation based on Institute of Electrical and Electronics Engineers (IEEE) 14 power distribution system verifies the effectiveness of the proposed risk assessment method.


2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.


2012 ◽  
Vol 516-517 ◽  
pp. 1722-1727 ◽  
Author(s):  
Wei Jun Yun ◽  
Gang Yao ◽  
Li Dan Zhou ◽  
Chen Chen ◽  
Jun Min Pan

Nowadays Static Synchronous Compensator (STATCOM) has gradually become one of the representative techniques in the field of dynamic reactive power compensation in the power distribution system. This paper analyzed the topology and the voltage imbalance problem of the up and down capacitors on DC side of the three-phase four-wire STATCOM. In allusion to the imbalance problem of neutral point, a novel control strategy based on the control of zero-sequence current was proposed. By the triple close-loop control strategy, the STATCOM can achieve great control accuracy and dynamic performance. Simulation result proves that the proposed control method is effective.


Sign in / Sign up

Export Citation Format

Share Document