Development of an In-House Test for Nut Integrity in F-Type Wheels

2015 ◽  
Vol 787 ◽  
pp. 340-344
Author(s):  
V.E. Annamalai ◽  
Arjhunn Hariharan ◽  
S.K. Vigneshram ◽  
C. Vinoth Kumar ◽  
Vivek Ananthakrishnan ◽  
...  

Nut embedded disc grinding wheels, also known as disc grinding or F-Type wheels, are required for many production jobs. Nut pull-out is a common problem encountered in disc grinding wheels. The present work proposes a simple fixture, using which the integrity of the nut in the grinding wheel can be assessed. This method can be adopted by any grinding wheel manufacturer for a realistic estimate of nut pull out strength in double disc grinding wheels.

2016 ◽  
Vol 686 ◽  
pp. 125-130 ◽  
Author(s):  
Miroslav Neslušan ◽  
Jitka Baďurová ◽  
Anna Mičietová ◽  
Maria Čiliková

This paper deals with cutting ability of progressive Norton Quantum grinding wheel during grinding roll bearing steel 100Cr6 of hardness 61 HRC. Cutting ability of this wheel is compared with conventional grinding wheel and based on measurement of grinding forces as well as surface roughness. Results of experiments show that Norton Quantum grinding wheels are capable of long term grinding cycles at high removal rates without unacceptable occurrence of grinding chatter and surface burn whereas application of conventional wheel can produce excessive vibration and remarkable temper colouring of ground surface. Moreover, while Norton Quantum grinding wheel gives nearly constant grinding forces and surface roughness within ground length at higher removal rates, conventional grinding wheel (as that reported in this study) does not.


2009 ◽  
Vol 34 (5) ◽  
pp. 643-650 ◽  
Author(s):  
H. OMAE ◽  
C. ZHAO ◽  
Y.-L. SUN ◽  
M. E. ZOBITZ ◽  
S. L. MORAN ◽  
...  

The purpose of this study was to assess tendon metabolism and suture pull-out strength after simple tendon suture in a tissue culture model. One hundred and twelve flexor digitorum profundus tendons from 28 dogs were cultured for 7, 14, or 21 days with or without a static tensile load. In both groups increased levels of matrix metalloproteinase (MMP) mRNA was noted. Suture pull-out strength did not decrease during tissue culture. While the presence of a static load had no effect on the pull-out strength, it did affect MMP mRNA expression. This tissue culture model could be useful in studying the effect of factors on the tendon-suture interface.


2010 ◽  
Vol 126-128 ◽  
pp. 690-695
Author(s):  
David Lee Butler

Surface measurement using three-dimensional stylus instruments is a relatively new technique that offers numerous advantages over more traditional profilometry methods. The information generated is, unlike profile measurement, less subjective and more statistical providing additional insight into the surface structure. One application of surface measurement that has encountered problems when using the profilometry method is that of grinding wheel characterisation. The wheel surface texture (topography) and the conditions under which it is generated have a profound effect upon the grinding performance as characterised by the grinding forces, power consumption, temperature, and surface integrity of components. A detailed knowledge of the nature of the topography of the grinding wheel would provide further insight into surface interactions between the wheel and workpiece as well as enabling improved control of the grinding process in general. In this paper four diamond grinding wheels of 91 and 181 micron grit size were subjected to differing dressing conditions to produce varying final wheel topographies. Three-dimensional surface measurement techniques were employed to quantitatively characterise the topographic change and provide an aerial estimation of the number of cutting grains. The results demonstrate that the techniques can distinguish between a worn and dressed wheel. In addition, the parametric values generated from the various surfaces can aid the user in determining when re-dressing is required.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Xining Zhang ◽  
Xu Liu ◽  
Huan Zhao

Grinding is a vital method in machining techniques and an effective way to process materials such as hardened steels and silicon wafers. However, as the running time increases, the unbalance of grinding wheels produce a severe vibration and noise of grinding machines because of the uneven shedding of abrasive particles and the uneven adsorption of coolant, which has a severe and direct impact on the accuracy and quality of parts. Online balancing is an important and necessary technique to reduce the unbalance causing by these factors and adjust the time-varying balance condition of the grinding wheel. A new active online balancing method using liquid injection and free dripping is proposed in this paper. The proposed online balancing method possesses a continuous balancing ability and the problem of losing balancing ability for the active online balancing method using liquid injection is solved effectively because some chambers are full of liquid. The residual liquid contained in the balancing chambers is utilized as a compensation mass for reducing rotor unbalance, where the rotor phase is proposed herein as a target for determining the machine unbalance. A new balancing device with a controllable injection and free dripping structure is successfully designed. The relationship between the mass of liquid in the balancing chamber and the centrifugal force produced by liquid is identified. The performance of the proposed method is verified by the balancing experiments and the results of these experiments show that the vibration of unbalance response is reduced by 87.3% at 2700 r/min.


Author(s):  
Oleksandr Lytvyn ◽  
Kalchenko Dmytro Kalchenko

Urgency of the research. In machine tools, automotive, agricultural engineering, manufacturing, where it is necessary to ensure high accuracy of surfaces of parts with different diameters of faces, it is required to adhere to high requirements for the quality of geometric sizes, roughness and accuracy of molding. Target setting. Grinding of end surfaces of parts with different diameters of faces, is carried out on two-sided end-grinding machines. The specific gravity of grinding in the total complexity of mechanical processing is constantly increasing and at the present stage it is about 30 % in the machine tool industry, in the automotive industry more than 38% of the total complexity of processing. Actual scientific researches and issues analysis. On the two-sided end-grinding machines of the Saturn company (Germany) the processing of round ends of parts is done with a circular feed to the processing area. Abrasive wheels are used without calibrating plots, which requires a lot of processing to obtain the required precision, which reduces the productivity of grinding. The disadvantage of the method is that the processing of parts with different face diameters is not considered. Uninvestigated parts of general matters defining. It is necessary to improve the processing efficiency of parts by developing the methods of two-sided polishing of the ends of pushers with different diameters oriented grinding wheels with and with-out calibrating sections, and also the rotation or without rotation of the workpiece on the calibration section, at least one revo-lution. The research objective. Improving the accuracy of finishing the end surfaces of parts of various diameters with grinding wheels, is achieved by the fact that the shaping of the ends of the smaller diameter is performed by the maximum diameter of the flat end of one circle, and the shaping of the end face of a larger diameter – the calibration section of the second circle, the length of which is equal to the diameter of the larger end and filled with diamond pencil, which moves along a radius, which coincides with the radius of the location of the axes of the parts in the feed drum. The statement of basic materials. In order to ensure the processing of parts in one pass and the necessary precision of processing, in large-scale and mass production, a grinding method oriented circles with calibrated sections with one-sided arrangement of ends of one diameter is used. The calibration sections are then made of different lengths, depending on the diameter, respectively, larger and smaller. Conclusions. The universal method of practical application of model of accuracy of shaping of ends of parts of different diameters, oriented grinding circles with and without calibration plots has been suggested. The presented method simplifies the grinding of the grinding wheel. It does not require special editing and allows to use regular editing.


2018 ◽  
Vol 30 (1) ◽  
pp. 67-74
Author(s):  
Mohamad WNN ◽  
Suliman NH ◽  
Kamarudin MK ◽  
Mohd-Amin N ◽  
Hassan R
Keyword(s):  
Pull Out ◽  

Sign in / Sign up

Export Citation Format

Share Document