Techno-Economic Performance Evaluation and Enhancement for a PV – Diesel Hybrid System

2016 ◽  
Vol 839 ◽  
pp. 130-135
Author(s):  
Ivan Tendo ◽  
Chatchai Sirisamphanwong

In this research paper, an illustration for system size optimization for a stand-alone PV – diesel hybrid system is obtained. The requirement is to obtain an optimal size that can meet energy demand at an optimized cost for a given lifetime period of the project, this will be achieved using HOMER software to further improve the system parameters like performance ratio, renewable energy fraction, MATLAB will be used. This research study will be done basing on a system currently installed at the School of Renewable Energy, Naresuan University (SERT), this system has a capacity of 120 kW, and it is a hybrid system with PV array, Diesel generator and battery storage system. The cost parameters that will be addressed are; - Net present cost (NPC), Cost of Energy (COE), Capital cost (CC). The initial size of the hybrid system is PV-120kW, Diesel generator -100kW and battery storage of 200kWh after modelling and simulation with HOMER software using special models to show the predicted performance of the final outcome, the optimal size created has a PV size of 100kW, diesel generator with a size of 100kW and battery storage of 100kWh and compared to the initial system COE od 1.01$/kWh, the optimal size has a COE of 0.934$/kWh.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yiwei Ma ◽  
Ping Yang ◽  
Zhuoli Zhao ◽  
Yuewu Wang

An optimal economic operation method is presented to attain a joint-optimization of cost reduction and operation strategy for islanded microgrid, which includes renewable energy source, the diesel generator, and battery storage system. The optimization objective is to minimize the overall generating cost involving depreciation cost, operation cost, emission cost, and economic subsidy available for renewable energy source, while satisfying various equality and inequality constraints. A novel dynamic optimization process is proposed based on two different operation control modes where diesel generator or battery storage acts as the master unit to maintain the system frequency and voltage stability, and a modified particle swarm optimization algorithm is applied to get faster solution to the practical economic operation problem of islanded microgrid. With the example system of an actual islanded microgrid in Dongao Island, China, the proposed models, dynamic optimization strategy, and solution algorithm are verified and the influences of different operation strategies and optimization algorithms on the economic operation are discussed. The results achieved demonstrate the effectiveness and feasibility of the proposed method.


Author(s):  
Sergio Materi ◽  
Antonio D’Angola ◽  
Diana Enescu ◽  
Paolo Renna

AbstractIn recent years, the production of renewable energy has increased continuously to reduce fossil fuel consumption and CO2 emissions and to increase energy efficiency. The challenge of industries is to integrate renewable energy systems into the existing power system of manufacturing industries. In the energy flexibility approach, the manufacturing energy demand is aligned with renewable energy availability, to improve the use of the renewable energy source. This paper aims to investigate a manufacturing system supplied by a photovoltaic plant coupled with a battery storage system. A basic storage model has been developed and implemented to pursue this issue. The model is applied in the simplified case of a manufacturing system composed of a cutting numerical control machine, which can adapt the cutting speed to align the power needed to the power supplied by the photovoltaic plant. However, the model can be extended to realistic production cases characterized by complex systems as long as the time evolution of energy consumptions are known in detail. The introduction of battery storage allows reducing the cutting speed fluctuations, improving the cutting life derived from the fatigue effect. This solution reduces the costs of the machine and improves the forecasting of the means needed for the manufacturing system. Finally, a detailed analysis of greenhouse gas reduction is discussed.


2021 ◽  
Vol 13 (14) ◽  
pp. 8048
Author(s):  
Anurag Chauhan ◽  
Subho Upadhyay ◽  
Mohd. Tauseef Khan ◽  
S. M. Suhail Hussain ◽  
Taha Selim Ustun

In the current scenario, sustainable power generation received greater attention due to the concerns of global warming and climate change. In the present paper, a Solar Photovoltaic/Diesel Generator/ Battery-based hybrid system has been considered to meet the electrical energy demand of a remote location of India. The cost of the energy of hybrid system is minimized using a Biogeography-based Optimization (BBO) algorithm under the constraints of power reliability, carbon emission and renewable energy fraction. Load following and cycle charging strategies have been considered in order to investigate the performance analysis of the proposed hybrid system. Further, different component combinations of specifications available on the market are presented for detail analysis. The minimum cost of energy of the proposed hybrid system is obtained as 0.225 $/kWh.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 129 ◽  
Author(s):  
Mustafa Ergin Şahin ◽  
Frede Blaabjerg

An increase in the integration of renewable energy generation worldwide brings along some challenges to energy systems. Energy systems need to be regulated following grid codes for the grid stability and efficiency of renewable energy utilization. The main problems that are on the active side can be caused by excessive power generation or unregulated energy generation, such as a partially cloudy day. The main problems on the load side can be caused by excessive or unregulated energy demand or nonlinear loads which deteriorate the power quality of the energy networks. This study focuses on the energy generation side as active power control. In this study, the benefits of supercapacitor use in a hybrid storage system are investigated and analyzed. A hybrid system in which photovoltaic powered and stored the energy in battery and supercapacitor are proposed in this study to solving the main problems in two sides. The supercapacitor model, photovoltaic model, and the proposed hybrid system are designed in MATLAB/Simulink for 6 kW rated power. Also, a new topology is proposed to increase the energy storage with supercapacitors for a passive storage system. The instantaneous peak currents energy is aimed to store in supercapacitors temporarily with this topology. The main advantages of this topology are voltage stabilization in two sides by the supercapacitors and a limitation of the battery load, which directly results in longer battery life and decreases the system cost. The simulation results are investigated for this topology.


Many times, Armed Forces are deployed in bases in remote areas on the borders or Islands, which are far flung areas away from mainland. In many such cases, these areas do not have their power requirements through the main grid supply and entire power requirement of the deployment is supplied by diesel generators. These diesel generators have high environmental impact due to emission of greenhouse gases and are highly uneconomical as logistic sustenance of remote bases for supply of fuel is very challenging, Fossil fuel has to be supplied by vehicles, helicopters, boats or manually carried to hill tops. This increases the overall cost of deploying armed forces in remote areas. In recent years with the advancements in power electronic components and renewable energy, development in Microgrids (MGs) have shown a way to reduce dependency on main power grids. Hence, with the help of MGs, renewable energy can be used to fulfill power requirements of the armed forces deployed in remote places. In this work, a MG with capacity of 1MW has been designed keeping the special needs of armed forces as a major consideration. Solar power has been used as a primary renewable energy source in the proposed design. In order to mitigate the adverse effects of meteorological and extreme conditions on the solar power generation capacity, energy storage system in the form of batteries has also been provided. Batteries store power when excess power is generated from the photo voltaic (PV) system and discharge the power when power demand is higher than the PV generated power. Diesel generator sets have also been used to run critical loads, provide reliability and as backup to critical operations catering for outages, night time needs and un-expected meteorological conditions. MATLAB has been used to design and simulate the proposed MG. Working of the MG has also been demonstrated for varying meteorological and varying load conditions as well. The proposed design works satisfactory in all cases.


2020 ◽  
Vol 10 (9) ◽  
pp. 3332
Author(s):  
Mohammad Al-Addous ◽  
Sahil Al Hmidan ◽  
Mustafa Jaradat ◽  
Emil Alasis ◽  
Nesrine Barbana

Periodic daily fluctuating demand for energy and power is a perceptible phenomenon, resulting in some moments of low demand for power and energy related to the huge energy comes from renewable energy systems, and some moments of peak load demand. This phenomenon, when combined with the non-stationary operation of huge capacity of renewable energy systems, results in no stability of voltage and frequency. To assure continuous network stability and to avoid energy losses from renewable energy systems that are subject to such control system, a hybrid system with energy–power storage in the form of pumped-hydro storage is considered the most suitable technically. This paper presents the design, modeling, analysis, and feasibility study of a hybrid wind and water-pumping storage system. The system was designed and analyzed for King Talal Dam (KTD), which is in Northern Jordan. The importance of this study is that it is directed mainly to Jordan and the Middle East and North Africa (MENA) region in general. The Jordanian renewable energy market is a promising arena that encourages developers, investors, engineers, and companies to develop and install pure renewable energy systems and renewable energy hybrid projects for the generation of electricity. The analysis of wind data is carried out using the “windfarm” software with 5.16 m/s as average wind speed. It is followed by the design of the hybrid system, which is simulated for a daily operation of 2–3 h as peak load hours. Based on the technical outcomes, cost study and feasibility analyses are carried out with Jordanian market prices. The total estimated annual energy production is 26,663,933 kWh from 10 MW wind farm and 5.2 MW pumping storage system. The aforementioned studies showed that a similar hybrid system is not always fully commercially feasible. However, a pure pumped-storage system proved to be technically feasible and assisting the grid. The whole project analysis determines that such a system boosts the operational stability of the grid, increases the penetration of renewable energy systems and reduces the energy import. In addition, 15,100,000 tons of CO2-equivalent is estimated as annual emissions reduction in this study.


2017 ◽  
Vol 6 (3) ◽  
pp. 263
Author(s):  
Chouaib Ammari

In this paper, we will size an optimum hybrid central content three different generators, two on renewable energy (solar photovoltaic and wind power) and two nonrenewable (diesel generator and storage system) because the new central generator has started to consider the green power technology in order for best future to the world, this central will use all the green power resource available and distributes energy to a small isolated village in southwest of Algeria named “Timiaouine”. The consumption of this village estimated with detailed in two season; season low consumption (winter) and high consumption (summer), the hybrid central will be optimized by program Hybrid Optimization Model for Electric Renewable (HOMER PRO), this program will simulate in two configuration, the first with storage system, the second without storage system and in the end the program HOMER PRO will choose the best configuration which is the mixture of both economic and ecologic configurations, this central warrants the energetic continuity of village.Article History: Received May 18th 2017; Received in revised form July 17th 2017; Accepted Sept 3rd 2017; Available onlineHow to Cite This Article: Ammari, C., Hamouda,M., and Makhloufi,S. (2017) Sizing and Optimization for Hybrid Central in South Algeria Based on Three Different Generators. International Journal of Renewable Energy Development, 6(3), 263-272.http://doi.org/10.14710/ijred.6.3.263-272


Sign in / Sign up

Export Citation Format

Share Document