scholarly journals Performance Investigation of a Solar Photovoltaic/Diesel Generator Based Hybrid System with Cycle Charging Strategy Using BBO Algorithm

2021 ◽  
Vol 13 (14) ◽  
pp. 8048
Author(s):  
Anurag Chauhan ◽  
Subho Upadhyay ◽  
Mohd. Tauseef Khan ◽  
S. M. Suhail Hussain ◽  
Taha Selim Ustun

In the current scenario, sustainable power generation received greater attention due to the concerns of global warming and climate change. In the present paper, a Solar Photovoltaic/Diesel Generator/ Battery-based hybrid system has been considered to meet the electrical energy demand of a remote location of India. The cost of the energy of hybrid system is minimized using a Biogeography-based Optimization (BBO) algorithm under the constraints of power reliability, carbon emission and renewable energy fraction. Load following and cycle charging strategies have been considered in order to investigate the performance analysis of the proposed hybrid system. Further, different component combinations of specifications available on the market are presented for detail analysis. The minimum cost of energy of the proposed hybrid system is obtained as 0.225 $/kWh.

2016 ◽  
Vol 839 ◽  
pp. 130-135
Author(s):  
Ivan Tendo ◽  
Chatchai Sirisamphanwong

In this research paper, an illustration for system size optimization for a stand-alone PV – diesel hybrid system is obtained. The requirement is to obtain an optimal size that can meet energy demand at an optimized cost for a given lifetime period of the project, this will be achieved using HOMER software to further improve the system parameters like performance ratio, renewable energy fraction, MATLAB will be used. This research study will be done basing on a system currently installed at the School of Renewable Energy, Naresuan University (SERT), this system has a capacity of 120 kW, and it is a hybrid system with PV array, Diesel generator and battery storage system. The cost parameters that will be addressed are; - Net present cost (NPC), Cost of Energy (COE), Capital cost (CC). The initial size of the hybrid system is PV-120kW, Diesel generator -100kW and battery storage of 200kWh after modelling and simulation with HOMER software using special models to show the predicted performance of the final outcome, the optimal size created has a PV size of 100kW, diesel generator with a size of 100kW and battery storage of 100kWh and compared to the initial system COE od 1.01$/kWh, the optimal size has a COE of 0.934$/kWh.


2014 ◽  
Vol 2 ◽  
pp. 15-23
Author(s):  
Puskar Suwal

The techno-economic viability of a hybrid system of solar photovoltaic and diesel generator with the most likely stand-alone systems, i.e. diesel-powered system and solar photovoltaic system, has been analyzed for energy demand through optimization and sensitivity analysis using HOMER. The concept of hybridizing is that the base load is to be covered by largest and firmly available renewable energy source(s), and other intermittent source(s) should augment the base load to cover the peak load. The model has been designed to provide an optimal system configuration based on hour-by-hour data for energy availability and demands. Based on the simulation results, the hybrid system is found to be economically feasible enough to replace the stand-alone system currently practicing to fulfill the energy demand during power cut-off in Nepal.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hussein A. Kazem ◽  
Tamer Khatib

This paper presents a method for determining optimal sizes of PV array, wind turbine, diesel generator, and storage battery installed in a building integrated system. The objective of the proposed optimization is to design the system that can supply a building load demand at minimum cost and maximum availability. The mathematical models for the system components as well as meteorological variables such as solar energy, temperature, and wind speed are employed for this purpose. Moreover, the results showed that the optimum sizing ratios (the daily energy generated by the source to the daily energy demand) for the PV array, wind turbine, diesel generator, and battery for a system located in Sohar, Oman, are 0.737, 0.46, 0.22, and 0.17, respectively. A case study represented by a system consisting of 30 kWp PV array (36%), 18 kWp wind farm (55%), and 5 kVA diesel generator (9%) is presented. This system is supposed to power a 200 kWh/day load demand. It is found that the generated energy share of the PV array, wind farm, and diesel generator is 36%, 55%, and 9%, respectively, while the cost of energy is 0.17 USD/kWh.


2021 ◽  
Vol 9 (1) ◽  
pp. 137-153
Author(s):  
Sezai Polat ◽  
Hacer Sekerci

Nowadays, off-grid systems, which do not require grid connection investment instead of grid connected systems, have become quite feasible. In this study, a feasibility analysis was carried out for a hybrid energy system using solar and wind energy sources to supply to uninterrupted electricity demand of a region with 100 villas in Izmir, Turkey. It has been shown that how changes cost of the hybrid energy system sizing according to the control strategies by using the HOMER software. In the paper, two different control strategies are determined as Cycle Charging (CC) and Load Following (LF), and then the control strategies are compared. According to the results obtained as a result of the simulations, it has been revealed that the research region to operate with CC can supply to the electrical energy demand with lower capacity system architecture. The CC was found to be more suitable for the research region than LF in terms of both Cost of Energy (COE) and Net Preset Cost (NPC).


2021 ◽  
Vol 13 (24) ◽  
pp. 13681
Author(s):  
Yunesky Masip Macía ◽  
Pablo Rodríguez Machuca ◽  
Angel Alexander Rodríguez Soto ◽  
Roberto Carmona Campos

The paper presents a complete value chain for the use of green hydrogen in a port facility. The main objective was to propose the sizing of the main components that make up green hydrogen to ensure the supply of 1 MWe in replacing the diesel generator. The energy demand required for the port was determined by establishing the leading small and large-scale conventional energy-consuming equipment. Hence, 60 kgH2 was required to ensure the power supply. The total electrical energy to produce all the hydrogen was generated from photovoltaic solar energy, considering three-generation scenarios (minimum, maximum and the annual average). In all cases, the energy supply in the electrolyzer was 3.08 MWe. In addition, the effect of generating in the port facility using a diesel generator and a fuel cell was compared. The cost of 1 kgH2 could be 4.09 times higher than the cost of 1 L of diesel, meaning that the output kWh of each system is economically similar. In addition, the value of electrical energy through a Power Purchase Agreement (PPA) was a maximum of 79.79 times the value of a liter of diesel. Finally, the Levelized Cost of Energy (LCOE) was calculated for two conditions in which the MWe was obtained from the fuel cell without and with the photovoltaic solar plant.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.


Author(s):  
Venkatachalam K M ◽  
V Saravanan

<p>The co-ordination of non-conventional energy technologies such as solar, wind, geothermal, biomass and ocean are gaining significance in India due to more energy requirements and high greenhouse gas emission. In this assessment, the sustainability of emerging the gird isolated hybrid solar photovoltaic (PV)/wind turbine (WT)/diesel generator (DG)/battery system for Arunai Engineering College (India) building is evaluated. The techno- economic and environmental research was inspected by HOMER Pro software by choosing the optimal combination depends on size of the components, renewable fraction, net present cost (NPC), cost of energy (COE) and greenhouse gas (GHG) emission of the hybrid system. From the acquired outcomes and sensitivity investigation, the optimal PV-WT-DG- Battery combination has a NPC of $28.944.800 and COE $0.1266/kWh, with an operating cost of $256.761/year. The grid isolated hybrid system is environmentally pleasant with a greenhouse gas emission of 2.692 kg/year with renewable fraction of 99.9%.</p>


2021 ◽  
Vol 16 (5) ◽  
pp. 883-893
Author(s):  
Amanda Halim ◽  
Ahmad Fudholi ◽  
Kamarulzzaman Sopian ◽  
Stephen J. Phillips

In recent years, the concept of hybrid energy systems (HESs) has been widely considered in the rural electrification of isolated or off-grid areas. Many cases have been studied since 2015, and the results indicate that an optimally designed HES is more reliable and economical than single energy source systems. Serving electricity to rural areas which are isolated from the central grid and thus suffer from lack of access requires an appropriate technology selection. In the provision of non-fluctuating electricity to a village on an island located in Mersing, Malaysia, solar energy is perceived to be the best addition to the existing power system that runs with a diesel generator as the main and single source. The area receives 4.46 kWhm−2 of solar radiation per day on average having the hybrid photovoltaic-diesel-battery system set up to supply the energy demand from about 16 households with other public buildings. This paper discusses the feasibility of the proposed system design for rural electrification at Kg Teluk Berhala, Aur Island Mersing, Malaysia and its performance is analysed using HOMER Pro®. A comparative analysis against existing configuration (baseline) and hypothetical configuration was conducted in justifying the hybrid-PV-diesel-battery as the best option for this rural electrification.


Author(s):  
Aysar Yasin ◽  
Mohammed Alsayed

In this research, a standalone microgrid power system is proposed to electrify a small agricultural community in Palestinian territories. The load includes residential load and water pumping load. The community comprises about 30 households with some service buildings in addition to the water pumping system. The average load energy demand is 300kWh/day and the average power demand is 12.5kW, in the same context, the average energy demand for water pumping is 49kWh/day. The region has abundant solar radiation potential with a daily average of 5.4 kWh/m<sup>2</sup>. The optimum design was achieved using the HOMER Pro software. It took into consideration real incident solar radiation data, electrical demand profile for the community and water pumping system and market cost of all equipment. The optimization results showed that the best hybrid system among all feasible configurations is a PV system with an energy storage system combined with a diesel generator. The net present cost of the system is USD636,150 and the cost of energy (COE) produced is USD0.438/kWh. Sensitivity analysis is considered to study the impact of variations in PV cost, diesel fuel price, and maximum annual capacity shortages (MACS), the results showed that MACS has no effects. Energy management procedure is followed to reduce the excess electricity from 10.6% to 6.24% which in turn reduces the COE from 0.438 to USD 0.416/kWh.


2021 ◽  
Vol 13 (22) ◽  
pp. 12734
Author(s):  
Md. Fatin Ishraque ◽  
Sk. A. Shezan ◽  
Md. Sohel Rana ◽  
S. M. Muyeen ◽  
Akhlaqur Rahman ◽  
...  

This paper presents an evaluation of the optimized design of an off-grid hybrid microgrid for alternative load dispatch algorithms with the determination of the most optimal sizing of each equipment, analyzing the voltage and frequency outputs and various costs of the proposed microgrids. Kushighat and Rajendro Bazar, two geographical locations in Bangladesh have been taken as test sites. The proposed microgrids incorporating diesel generator, renewable resources, storage device, and 23.31 kW of demand have been optimized for five conventional load dispatch methodologies: HOMER predictive dispatch, Load Following, Generator Order, Cycle Charging, and Combined Dispatch to reduce the system’s net present cost, gas discharge and cost of energy. HOMER (Hybrid Optimization of Multiple Electric Renewables) software has been used for the analysis to determine the optimal sizes and costing and the voltage-frequency performances of the microgrids are analyzed using MATLAB/Simulink. From our analysis, load following is determined as the superior approach with a minimum operating cost of 3738 USD, net present cost of 152,023 USD, CO2 discharge of 3375 kg/year and cost of energy of 0.208 USD /kWh along with a steady voltage-frequency output. Combined dispatch is determined as the worst strategy for the proposed microgrids with the highest energy cost of 0.532 USD /kWh, the operational cost of 15,394 USD, net present cost of 415,030 USD, and high CO2 discharge. At the end of this work, a comparative analysis between the proposed design, another hybrid, and traditional generation plant is also presented. The findings of this work will be appropriate for any location with an identical demand profile and meteorological estate.


Sign in / Sign up

Export Citation Format

Share Document