An H∞ Design Approach for a PID Automatic Flight Control System of a Launch Vehicle

2016 ◽  
Vol 859 ◽  
pp. 116-123
Author(s):  
Adrian Mihail Stoica ◽  
Mihaela Raluca Stefanescu

The paper presents a design methodology for the automatic flight control of a launch vehicle. In the proposed approach the controller has a PID (Proportional-Integral-Derivative) structure but its gains are determined solving an H∞ norm minimization problem of the mapping from the atmospheric disturbances to the control amplitude and to the angle of attack of the launcher. The design methodology is illustrated by numerical examples in which both time responses and stability robustness properties of the optimal PID controller are analyzed.

2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Andi Adriansyah ◽  
Shamsudin H. M. Amin ◽  
Anwar Minarso ◽  
Eko Ihsanto

The rapid development of microprocessor, electrical, sensors and advanced control technology make a quadrotor fast expansion. Unfortunately, a quadrotor is unstable and impossible to fly in fully open loop system. PID controller is one of methodology that has been proposed to control the flight control system. Unfortunately, adjustment of PID parameters for robust control performance is not easy and still problems. The paper proposed a flight controller system based on a PID controller. The PID parameters are tuned automatically using Particle Swarm Optimization (PSO). Objective of this method is to improve the flight control system performance. Several experiments have been performed. According to these experiments the proposed system able to generate optimal and reliable PID parameters for robust flight controller. The system also has 41.57 % improvement in settling time response.


2015 ◽  
Vol 772 ◽  
pp. 410-417 ◽  
Author(s):  
Adrian Mihail Stoica ◽  
Cristian Emil Constantinescu ◽  
Silvia Nechita

This paper presents a design approach for the automatic flight control system of a launch vehicle using a linear quadratic integral technique together with a fixed gain Kalman filter. Its purpose is to analyse the stability and tracking robustness performances of the control system designed via this approach when atmospheric disturbances, modeling uncertainties and structural flexible modes of the launcher are taken into account.


2012 ◽  
Vol 628 ◽  
pp. 420-426
Author(s):  
Sayedmehran Mirsafaie Rizi ◽  
Ali Khalili Mobarakeh ◽  
Mina Mirsafaie ◽  
Saba Nazari ◽  
Mohd Rizal Bin Arshad

This research work elaborates the investigation of lateral flight control system as point of unmanned aerial vehicle control.To evaluate our work, we have used rigid flying object model that is 10 meters in lengthand studythe effects of number of forces were consideredsuch as inertia, fin force and wind to design the heading controller,Fuzzy logic controller more specifically Proportional Integral Derivative (PID) controller is used,wherepros and cons of fuzzy logic controller is considered. To justify our proposed work, simulation is been implemented to model controller designs and dynamics of the airship.Furthermore comparative study have been done between the outcome of the system to be design and the latest research literature. Experimentalresultsillustrate that our method is efficient, is more reliable and effective.


2019 ◽  
Vol 92 (2) ◽  
pp. 264-270
Author(s):  
Firat Sal

Purpose The purpose of this paper presents the effects of actively morphing root chord and taper on the energy of the flight control system (i.e. FCS). Design/methodology/approach Via regarding previously mentioned purposes, sophisticated and realistic helicopter models are benefitted to examine the energy of the FCS. Findings Helicopters having actively morphing blade root chord length and blade taper consume less control energy than the ones having one of or any of passively morphing blade root chord length and blade taper. Practical implications Actively morphing blade root chord length and blade taper can be used for cheaper helicopter operations. Originality/value The main originality of this paper is applying active morphing strategy on helicopter blade root chord and blade taper. In this paper, it is also found that using active morphing strategy on helicopter blade root chord and blade taper reasons less energy consumption than using either passively morphing blade root chord length plus blade taper or not any. This causes also less fuel consumption and green environment.


2012 ◽  
Vol 433-440 ◽  
pp. 7011-7016 ◽  
Author(s):  
Chao Bo Chen ◽  
Bing Liu ◽  
Ning He ◽  
Song Gao ◽  
Quan Pan

The accuracy and real-time of modern missile flight control system of traditional aerodynamic can not be satisfied. In this paper a new method is presented to improve the accuracy and real-time of missiles under this condition. First of all, a missile sub-channel model of the dynamic equations and steering gear is established, then based on the established model, using PID controller to control steering gear and three channels of missile pitch, yaw, roll respectively which is called missile sub-channel PID control method, and finally making use of MATLAB/Simulink to complete the simulation. Simulation results show that compared with traditional aerodynamic control system, this method can reduce the response time of aerodynamic missile and enhance the stability of the control system obviously.


Author(s):  
D. Griffin ◽  
A. G. Kelkar

This paper presents a robust controller design for an automatic flight control system (AFCS) for a fighter aircraft model with eight inputs and seven outputs. The controller is designed based on McFarlane-Glover robustifying technique using a simple baseline LQG design. Controllers designed purely based on traditional LQG techniques are known to have no guaranteed robustness margins. The McFarlane-Glover technique can be used to enhance the stability robustness of the baseline LQG design using a two-step design process. In the first step, an LQG controller is designed which is optimized only for performance without any consideration to robustness. In the second step, the performance optimized LQG design is rendered robust using McFarlane-Glover procedure. The robustifying procedure uses a coprime factor uncertainty model and H∞ optimization. An important advantage of this procedure is that no problem dependent uncertainty modelling or weight selection is required in the second step of the process. The robustifying procedure also yields the quantitative estimate of the robustness.


2016 ◽  
Vol 88 (6) ◽  
pp. 799-809 ◽  
Author(s):  
Emre Kiyak

Purpose This study aims to present a method for the conceptual design and simulation of an aircraft flight control system. Design/methodology/approach The design methodology is based on particle swarm optimization (PSO). PSO can be used to improve the performance of conventional controllers. The aim of the present study is threefold. First, it attempts to detect and isolate faults in an aircraft model. Second, it is to design a proportional (P) controller, a proportional derivative (PD) controller, a proportional-integral (PI) controller and a fuzzy controller for an aircraft model. Third, it is to design a PD controller for an aircraft using a PSO algorithm. Findings Conventional controllers, an intelligent controller and a PD controller-based PSO were investigated for flight control. It was seen that the P controller, the PI controller and the PD controller-based PSO caused overshoot. These overshoots were 18.5, 87.7 and 2.6 per cent, respectively. Overshoot was not seen using the PD controller or fuzzy controller. Steady state errors were almost zero for all controllers. The PD controller had the best settling time. The fuzzy controller was second best. The PD controller-based PSO was the third best, but the result was close to the others. Originality/value This study shows the implementation of the present algorithm for a specified space mission and also for study regarding variation of performance parameters. This study shows fault detection and isolation procedures and also controller gain choice for a flight control system. A comparison between conventional controllers and PD-based PSO controllers is presented. In this study, sensor fault detection and isolation are carried out, and, also, root locus, time domain analysis and Routh–Hurwitz methods are used to find the conventional controller gains which differ from other studies. A fuzzy controller is created by the trial and error method. Integral of squared time multiplied by squared error is used as a performance function type in PSO.


Author(s):  
Nur Ezzyana Ameera Mazlan ◽  
◽  
Syariful Syafiq Shamsudin ◽  
Mohammad Fahmi Pairan ◽  
Mohd Fauzi Yaakub ◽  
...  

This research focuses on developing an automatic flight control system for a fixed-wing unmanned aerial vehicle (UAV) using a software-in-the-loop method in which the PID controller is implemented in National Instruments LabVIEW software and the flight dynamics of the fixed-wing UAV are simulated using the X-Plane flight simulator. The fixed-wing UAV model is created using the Plane Maker software and is based on existing geometry and propulsion data from the literature. Gain tuning for the PID controller is accomplished using the pole placement technique. In this approach, the controller gain can be calculated using the dynamic parameters in the transfer function model and the desired characteristic equation. The proposed controller designs' performance is validated using attitude, altitude, and velocity hold simulations. The results demonstrate that the technique can be an effective tool for researchers to validate their UAV control algorithms by utilising the realistic UAV or manned aircraft models available in the X-Plane flight simulator.


Sign in / Sign up

Export Citation Format

Share Document