scholarly journals Effects of Lubrication on the Friction in Nanometric Machining Processes: A Molecular Dynamics Approach

2017 ◽  
Vol 869 ◽  
pp. 85-93 ◽  
Author(s):  
Martin P. Lautenschlaeger ◽  
Simon Stephan ◽  
Herbert M. Urbassek ◽  
Benjamin Kirsch ◽  
Jan Christian Aurich ◽  
...  

Physical phenomena in a nanometric machining process were studied by molecular dynamics simulations. A cylindrical tool was indented and then moved laterally on an initially flat workpiece. The focus of the study is on the effect of lubrication on the nanoscale. Therefore, the indentation and the scratching were studied both in vacuum and submersed in a lubricant. All materials were modeled by Lennard-Jones truncated and shifted potential sites. It is observed, that in the lubricated case, a substantial part of the cutting edge of the tool is in dry contact with the workpiece. Nevertheless, compared to the dry scenario, the lubrication lowers the coefficient of friction. However, the work which is needed for the indentation and the scratching is not reduced. The processed surface is found to be smoother in the lubricated case. As expected, the lubrication has an important influence on the temperature field observed in the simulation.

Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


1993 ◽  
Vol 317 ◽  
Author(s):  
N.A. Marks ◽  
P. Guan ◽  
D.R. Mckenzie ◽  
B.A. PailThorpe

ABSTRACTMolecular dynamics simulations of nickel and carbon have been used to study the phenomena due to ion impact. The nickel and carbon interactions were described using the Lennard-Jones and Stillinger-Weber potentials respectively. The phenomena occurring after the impact of 100 e V to 1 keV ions were studied in the nickel simulations, which were both two and three-dimensional. Supersonic focussed collision sequences (or focusons) were observed, and associated with these focusons were unexpected sonic bow waves, which were a major energy loss mechanism for the focuson. A number of 2D carbon films were grown and the stress in the films as a function of incident ion energy was Measured. With increasing energy the stress changed from tensile to compressive and reached a maximum around 50 eV, in agreement with experiment.


2021 ◽  
Author(s):  
Martin P. Lautenschlaeger ◽  
Hans Hasse

It was shown recently that using the two-gradient method, thermal, caloric, and transport properties of fluids under quasi-equilibrium conditions can be determined simultaneously from nonequilibrium molecular dynamics simulations. It is shown here that the influence of shear stresses on these properties can also be studied using the same method. The studied fluid is described by the Lennard-Jones truncated and shifted potential with the cut-off radius r*c = 2.5σ. For a given temperature T and density ρ, the influence of the shear rate on the following fluid properties is determined: pressure p, internal energy u, enthalpy h, isobaric heat capacity cp, thermal expansion coefficient αp, shear viscosity η, and self-diffusion coefficient D. Data for 27 state points in the range of T ∈ [0.7, 8.0] and ρ ∈ [0.3, 1.0] are reported for five different shear rates (γ ̇ ∈ [0.1,1.0]). Correlations for all properties are provided and compared with literature data. An influence of the shear stress on the fluid properties was found only for states with low temperature and high density. The shear-rate dependence is caused by changes in the local structure of the fluid which were also investigated in the present work. A criterion for identifying the regions in which a given shear stress has an influence on the fluid properties was developed. It is based on information on the local structure of the fluid. For the self-diffusivity, shear-induced anisotropic effects were observed and are discussed.


Author(s):  
M. R. Lovell ◽  
P. H. Cohen ◽  
R. Shankar

When machining miniaturized components, the contact conditions between the tool and workpiece exhibit very small contact areas that are on the order of 10−5 mm2. Under these conditions, extremely high contact stresses are generated and it is not clear whether macroscopic theories for the chip formation, cutting forces, and the friction mechanisms are applicable. For this reason, the present investigation has focused on creating a basic understanding of the frictional behavior in micro machining processes so that evaluations of standard macro-scale models could be performed. Specialized machining experiments were conducted on 70/30 brass materials using steel tools over a range of speeds, feeds, depths of cut and tool rake angles. At each operating condition studied, the friction coefficient and the shear factor, τk, were obtained. Based on the experimental results, it was determined that standard macroscopic theory for analyzing detailed friction mechanisms was insufficient in micro machining processes. An approach that utilized the shear factor, in contrast, was found to be better for decoupling the physical phenomena involved. Utilizing the shear factor as an analysis parameter, the parameters that significantly influence the friction in microscale machining process were ascertained and discussed.


2016 ◽  
Vol 195 ◽  
pp. 557-568 ◽  
Author(s):  
Pablo M. Piaggi ◽  
Omar Valsson ◽  
Michele Parrinello

We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. Therefore we use a recently developed enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett.113, 090601 (2014)] based on the variational determination of a bias potential. We differ from previous applications of this method in that the bias is constructed on the basis of the physical model provided by the classical theory of nucleation. We examine the technical problems associated with this approach. Our results are very satisfactory and will pave the way for calculating the nucleation rates in many systems.


Sign in / Sign up

Export Citation Format

Share Document