PID Parameters Optimization of Pressure and Phear Testing Controller Based on CLPSO Algorithm

2011 ◽  
Vol 88-89 ◽  
pp. 104-109
Author(s):  
Hong Ji Wu ◽  
Zhen Qiu Hu

This paper presents an improved algorithm which is Comprehensive Learning Particle Swarm Optimization(CLPSO).CLPSO utilizes a new learning strategy have achieve the goal to accelerate the convergence of the classical PSO.CLPSO algorithm is effective to optimize PID controller’s parameter.The simulation results show its better performance than traditional ways in the PID parameter optimization of a hydraulic system controller.

2016 ◽  
Vol 10 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Chen Gonggui ◽  
Du Yangwei ◽  
Guo Yanyan ◽  
Huang Shanwai ◽  
Liu Lilan

Parameter optimization of water turbine regulating system (WTRS) is decisive in providing support for the power quality and stability analysis of power system. In this paper, an improved fuzzy particle swarm optimization (IFPSO) algorithm is proposed and used to solve the optimization problem for WTRS under frequency and load disturbances conditions. The novel algorithm which is based on the standard particle swarm optimization (PSO) algorithm can speed up the convergence speed and improve convergence precision with combination of the fuzzy control thought and the crossover thought in genetic algorithm (GA). The fuzzy control is employed to get better dynamics of balance between global and local search capabilities, and the crossover operator is introduced to enhance the diversity of particles. Two different types of WTRS systems are built and analyzed in the simulation experiments. Furthermore, the sum of regulating time and another number that is the integral of sum for absolute value of system error and the squared governor output signal is considered as the fitness function of this algorithm. The simulation experiments for parameter optimization problem of WTRS system are carried out to confirm the validity and superiority of the proposed IFPSO, as compared to standard PSO, Ziegler Nichols (ZN) algorithm and fuzzy PID algorithm in terms of parameter optimization accuracy and convergence speed. The simulation results reveal that IFPSO significantly improves the dynamic performance of system under all of the running conditions.


Author(s):  
Wei Li ◽  
Xiang Meng ◽  
Ying Huang ◽  
Soroosh Mahmoodi

AbstractMultiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to the selection of inappropriate leaders and inefficient evolution strategies. Therefore, to circumvent the rapid loss of population diversity and premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective particle swarm optimization using fusion learning strategies (KGMOPSO), in which an improved leadership selection strategy based on knowledge utilization is presented to select the appropriate global leader for improving the convergence ability of the algorithm. Furthermore, the similarity between different individuals is dynamically measured to detect the diversity of the current population, and a diversity-enhanced learning strategy is proposed to prevent the rapid loss of population diversity. Additionally, a maximum and minimum crowding distance strategy is employed to obtain excellent nondominated solutions. The proposed KGMOPSO algorithm is evaluated by comparisons with the existing state-of-the-art multiobjective optimization algorithms on the ZDT and DTLZ test instances. Experimental results illustrate that KGMOPSO is superior to other multiobjective algorithms with regard to solution quality and diversity maintenance.


2014 ◽  
Vol 687-691 ◽  
pp. 5161-5164
Author(s):  
Lian Zhou Gao

As the development of world economy, how to realize the reasonable vehicle logistics routing path problem with time window constrain is the key issue in promoting the prosperity and development of modern logistics industry. Through the research of vehicle logistics routing path 's demand, particle swarm optimization with a novel particle presentation is designed to solve the problem which is improved, effective and adept to the normal vehicle logistics routing. The simulation results of example indicate that the algorithm has more search speed and stronger optimization ability.


2011 ◽  
Vol 268-270 ◽  
pp. 934-939
Author(s):  
Xue Wen He ◽  
Gui Xiong Liu ◽  
Hai Bing Zhu ◽  
Xiao Ping Zhang

Aiming at improving localization accuracy in Wireless Sensor Networks (WSN) based on Least Square Support Vector Regression (LSSVR), making LSSVR localization method more practicable, the mechanism of effects of the kernel function for target localization based on LSSVR is discussed based on the mathematical solution process of LSSVR localization method. A novel method of modeling parameters optimization for LSSVR model using particle swarm optimization is proposed. Construction method of fitness function for modeling parameters optimization is researched. In addition, the characteristics of particle swarm parameters optimization are analyzed. The computational complexity of parameters optimization is taken into consideration comprehensively. Experiments of target localization based on CC2430 show that localization accuracy using LSSVR method with modeling parameters optimization increased by 23%~36% in compare with the maximum likelihood method(MLE) and the localization error is close to the minimum with different LSSVR modeling parameters. Experimental results show that adapting a reasonable fitness function for modeling parameters optimization using particle swarm optimization could enhance the anti-noise ability significantly and improve the LSSVR localization performance.


Sign in / Sign up

Export Citation Format

Share Document