Stress State of a Thick-Walled Cylindrical Shell under the Combined Action of Radiation and Temperature Field

2014 ◽  
Vol 1006-1007 ◽  
pp. 177-180 ◽  
Author(s):  
Vladimir I. Andreev ◽  
Daniil A. Kapliy

There is a solution of the problem of stress-strain state determining in a concrete thick-walled tube, when the temperature field and the neutron fluence at the inner face are set. The mutual action of the specified factors is identified in this axisymmetric problem, as well as influence of inhomogeneity of shell materials, which is due to radiation and heat impact. The problem reduces to a differential equation with variable coefficients. The allowance for the mutual action of the specified factors and the variable Young’s module lets to arrive to a more accurate solution.

2013 ◽  
Vol 671-674 ◽  
pp. 571-575 ◽  
Author(s):  
Vladimir I. Andreev ◽  
Anatoliy S. Avershyev

This paper contains a solution of the problem of determining stress state in clay soil near a cylindrical and spherical cavities for the propagation of the moisture out of the cavity into the solid mass. The problem is solved in a stationary symmetric formulation taking into account changes the modulus of elasticity of soil moisture. The problem is reduced to a differential equation with variable coefficients. This complicates the solution of the problem compared with the solutions for constant modulus of elasticity, but it provides a more accurate solution.


Author(s):  
V.I. Andreev ◽  
◽  
S.A. Sereda ◽  

Abstract. The article deals with the problem of creep of a polymer thick-walled cylindrical shell under the action of an uneven temperature field. The calculation is based on the nonlinear Maxwell – Gurevich equation, which is widely used in the calculations of polymer structures. To solve a quasi-stationary nonlinear problem, a "layer-by-layer" method is used, where a layer means a certain time of the process. Such methods for solving creep problems are also called step, sequential loading, incremental, etc. The problem is solved in an axisymmetric formulation under conditions of plane deformation. The use of the Maxwell – Gurevich differential equation allows solving rheology problems when exposed to a timevarying temperature field. The change in the stress state with time and its significant difference from the elastic solution are shown.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed Al-Smadi ◽  
Nadir Djeddi ◽  
Shaher Momani ◽  
Shrideh Al-Omari ◽  
Serkan Araci

AbstractOur aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space $\mathcal{H}^{2}[a,b]$ H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.


1964 ◽  
Vol 4 (04) ◽  
pp. 291-306 ◽  
Author(s):  
C. Kenneth Eilerts

Abstract Finite difference equations were programmed and used to integrate the second-order, second-degree, partial differential equation with variable coefficients that represents the transient linear flow of gas-condensate fluids. Effect was given to the change with pressure of the compressibility factor, the viscosity, and the effective permeability and to change of the absolute permeability with distance. Integrations used as illustrations include recovery of fluid from a reservoir at a constant production rate followed by recovery at a declining rate calculated to maintain a constant pressure at the producing boundary. The time required to attain such a limiting pressure and the fraction of the reserve recovered in that time vary markedly with properties of the fluid represented by the coefficients. Fluid also is returned to the reservoir at a constant rate, until initial formation pressure is attained at the input boundary, and then at a calculated rate that will maintain but not exceed the limiting pressure. The computing programs were used to calculate the results that would be obtained in a series of back-pressure tests made at selected intervals of reservoir depletion. If effect is given to the variations in properties of the fluid that actually occur, then a series of back-pressure curves one for each stage of reserve depletion -- is required to indicate open-flow capacity and related flow characteristics dependably. The isochronal performance method for determining flow characteristics of a well was simulated by computation. Introduction The back-pressure test procedure is based on a derivation of the equation for steady-state radial flow of a gas, the properties of which are of necessity assumed to remain unchanged in applying the test results. The properties of most natural gases being recovered from reservoirs change as the reserve is depleted and pressures decline, and the results of an early back-pressure test may not be dependable for estimating the future delivery capacity of a well. The compressibility factor of a fluid under an initial pressure of 10,000 psia can change 45 per cent and the viscosity can change 70 per cent during the productive life of the reservoir. There are indications that the effective permeability to the flowing fluid can become 50 per cent of the original absolute permeability before enough liquid collects in the structure about a well as pressure declines to permit flow of liquid into the well. The advent of programmed electronic computing made practicable the integration of nonlinear, second-order, partial differential equations pertaining to flow in reservoirs. Aronofsky and Porter represented the compressibility factor and the viscosity by a linear relationship, and integrated the equation for radial flow of gas for pressures up to 1,200 psi. Bruce, Peaceman, Rachford and Rice integrated the partial differential equations for both linear and radial unsteady-state flow of ideal gas in porous media. Their published results were a substantial guide in this study of integration of the partial differential equation of linear flow with coefficients of the equation variable. The computing program was developed to treat effective permeability as being both distance-dependent and pressure-dependent. In this study all examples of effective permeability are assumptions designed primarily to aid in developing programs for giving effect to this and other variable coefficients. The accumulation of data for expressing the pressure dependency of the effective permeability is the objective of a concurrent investigation. SPEJ P. 291^


2022 ◽  
Vol 905 ◽  
pp. 297-302
Author(s):  
Lin Liu ◽  
Mei Qing Zhang

In order to investigate the temperature distribution and cracking risk of concrete in winter under the combined action of heating zone and air layer, the analytical calculation method of early age concrete temperature field of concrete component under the combined action of self-limiting temperature band, cement hydration and air layer was established by taking concrete prism with self-limiting temperature band as an example. The model is applied to calculate and analyze the temperature distribution of concrete under different boundary conditions and different additional thermal field modes. The results show that: Under the conditions of internal layout, surface layout and thermal insulation layer outside the formwork, all components reach the critical strength after heating and curing for three days, which indicates that the heating band can provide temperature conditions for concrete curing in winter. Comparing the temperature field of different layout positions of heating belt, the uniformity of temperature field of heating belt outside the formwork is better than the other two layout methods.


Vestnik MGSU ◽  
2015 ◽  
pp. 72-83
Author(s):  
Armen Zavenovich Ter-Martirosyan ◽  
Zaven Grigor’evich Ter-Martirosyan ◽  
Tuan Viet Trinh

The article presents the formulation and analytical solution to a quantification of stress strain state of a two-layer soil cylinder enclosing a long pile, interacting with the cap. The solution of the problem is considered for two cases: with and without account for the settlement of the heel and the underlying soil. In the first case, the article is offering equations for determining the stresses of pile’s body and the surrounding soil according to their hardness and the ratio of radiuses of the pile and the surrounding soil cylinder, as well as formulating for determining equivalent deformation modulus of the system “cap-pile-surrounding soil” (the system). Assessing the carrying capacity of the soil under pile’s heel is of great necessity. In the second case, the article is solving a second-order differential equation. We gave the formulas for determining the stresses of the pile at its top and heel, as well as the variation of stresses along the pile’s body. The article is also formulating for determining the settlement of the foundation cap and equivalent deformation modulus of the system. It is shown that, pushing the pile into underlying layer results in the reducing of equivalent modulus of the system.


Author(s):  
Sergey B. Kosytsyn ◽  
Vladimir Y. Akulich

The work is aimed at research of the stress-strain state of a cylindrical shell of a tunnel using the non-linear static analysis and construction stage analysis. Research is carried out on the example of determining the stress-strain state of the tubing (shells) of the main line tunnel, constructed using a tunnel powered complex (slurry shield). Based on obtained results, a comparative analysis of the computational models with the corresponding conclusions is presented.


Sign in / Sign up

Export Citation Format

Share Document