Scanning Measurement of Coated Glass Color-Difference and Design of Anti-Interference

2014 ◽  
Vol 1008-1009 ◽  
pp. 1125-1129
Author(s):  
Bao Jun Zhang ◽  
Wei Hong Bi ◽  
Yu Zhang ◽  
Qiang Liu ◽  
Jing Wei Xing

Based on the colorimetric theory and combined with the production process of glass industry, a color-difference measurement system was designed. The system was applied to online color-difference detection for coated glass. Scanning measurement of color-difference based on spectroscopy was detailed, and the technologies of light source modulation and signal demodulation synchronization were introduced into the system. This avoided using sensor masks or soft curtain to eliminate backlight interference. Under the light source with fluctuations and other background noise, the new system can get robust measurement values. The experimental results show that the anti-interference method smooths the curve of color-difference, and improves the signal-to-noise ratio. The system meets the demands of practical color-difference testing, and provides a new method for online color measurement with high accuracy.

2007 ◽  
Author(s):  
Weihong Bi ◽  
Yu Zhang ◽  
Dajiang Wang ◽  
Baojun Zhang ◽  
Guangwei Fu

2008 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Erin C. Schafer

Children who use cochlear implants experience significant difficulty hearing speech in the presence of background noise, such as in the classroom. To address these difficulties, audiologists often recommend frequency-modulated (FM) systems for children with cochlear implants. The purpose of this article is to examine current empirical research in the area of FM systems and cochlear implants. Discussion topics will include selecting the optimal type of FM receiver, benefits of binaural FM-system input, importance of DAI receiver-gain settings, and effects of speech-processor programming on speech recognition. FM systems significantly improve the signal-to-noise ratio at the child's ear through the use of three types of FM receivers: mounted speakers, desktop speakers, or direct-audio input (DAI). This discussion will aid audiologists in making evidence-based recommendations for children using cochlear implants and FM systems.


Author(s):  
Brian Skoglind ◽  
Travis Roberts ◽  
Sourabh Karmakar ◽  
Cameron Turner ◽  
Laine Mears

Abstract Electrical connections in consumer products are typically made manually rather than through automated assembly systems due to the high variety of connector types and connector positions, and the soft flexible nature of their structures. Manual connections are prone to failure through missed or improper connections in the assembly process and can lead to unexpected downtime and expensive rework. Past approaches for registering connection success such as vision verification or Augmented Reality have shown limited ability to verify correct connection state. However, the feasibility of an acoustic-based verification system for electrical connector confirmation has not been extensively researched. One of the major problems preventing acoustic based verification in a manufacturing or assembly environment is the typically low signal to noise ratio (SNR) between the sound of an electrical connection and the diverse soundscape of the plant. In this study, a physical means of background noise mitigation and signature amplification are investigated in order to increase the SNR between the electrical connection and the plant soundscape in order to improve detection. The concept is that an increase in the SNR will lead to an improvement in the accuracy and robustness of an acoustic event detection and classification system. Digital filtering has been used in the past to deal with low SNRs, however, it runs the risk of filtering out potential important features for classification. A sensor platform is designed to filter out and reduce background noise from the plant without effecting the raw acoustic signal of the electrical connection, and an automated detection algorithm is presented. The solution is over 75% effective at detecting and classifying connections.


2016 ◽  
Vol 9 (10) ◽  
pp. 4977-4995 ◽  
Author(s):  
Guillaume Merlin ◽  
Jérôme Riedi ◽  
Laurent C. Labonnote ◽  
Céline Cornet ◽  
Anthony B. Davis ◽  
...  

Abstract. Information content analyses on cloud top altitude (CTOP) and geometrical thickness (CGT) from multi-angular A-band measurements in the case of monolayer homogeneous clouds are conducted. In the framework of future multi-angular radiometer development, we compared the potential performances of the 3MI (Multi-viewing, Multi-channel and Multi-polarization Imaging) instrument developed by EUMETSAT, which is an extension of POLDER/PARASOL instrument and MSPI (Multiangle SpectroPolarimetric Imager) developed by NASA's Jet Propulsion Laboratory. Quantitative information content estimates were realized for thin, moderately opaque and opaque clouds for different surface albedo and viewing geometry configurations. Analyses show that retrieval of CTOP is possible with a high accuracy in most of the cases investigated. Retrieval of CGT is also possible for optically thick clouds above a black surface, at least when CGT > 1–2 km and for thin clouds for CGT > 2–3 km. However, for intermediate optical thicknesses (COT ≃ 4), we show that the retrieval of CGT is not simultaneously possible with CTOP. A comparison between 3MI and MSPI shows a higher information content for MSPI's measurements, traceable to a thinner filter inside the oxygen A-band, yielding higher signal-to-noise ratio for absorption estimation. Cases of cloud scenes above bright surfaces are more complex but it is shown that the retrieval of CTOP remains possible in almost all situations while the information content on CGT appears to be insufficient in many cases, particularly for COT < 4 and CGT < 2–3 km.


2021 ◽  
Vol 28 (2) ◽  
pp. 247-256
Author(s):  
Siming He ◽  
Jian Guan ◽  
Xiu Ji ◽  
Hang Xu ◽  
Yi Wang

Abstract. In spread spectrum induced polarization (SSIP) data processing, attenuation of background noise from the observed data is the essential step that improves the signal-to-noise ratio (SNR) of SSIP data. The time-domain spectral induced polarization based on pseudorandom sequence (TSIP) algorithm has been proposed to improve the SNR of these data. However, signal processing in background noise is still a challenging problem. We propose an enhanced correlation identification (ECI) algorithm to attenuate the background noise. In this algorithm, the cross-correlation matching method is helpful for the extraction of useful components of the raw SSIP data and suppression of background noise. Then the frequency-domain IP (FDIP) method is used for extracting the frequency response of the observation system. Experiments on both synthetic and real SSIP data show that the ECI algorithm will not only suppress the background noise but also better preserve the valid information of the raw SSIP data to display the actual location and shape of adjacent high-resistivity anomalies, which can improve subsequent steps in SSIP data processing and imaging.


Author(s):  
Md Anowar Hossain

Chromatic and achromatic (AC) assessments of camouflage textiles have been critical to the defense researchers for concealment, detection, recognition, and identification (CDRI) of target signature against multidimensional combat background (CB). AC assessment and camouflage measurement techniques are simulated and experimented for assessment of camouflage textiles against CB. This model has been demonstrated for color measurement spectrophotometer, scanning electron microscopy (SEM), digital imaging, hyperspectral imaging, and image processing software (ImageJ) for the advancement and establishment of AC camouflage textiles assessment. The chromatic variations of 48 artificial target objects (TOBs) have been synthesized by image processing; the technique can be implemented for defense CB-CDRI assessment. Microstructural variation versus optical signal of woodland, desertland and stoneland CB materials have been elucidated by SEM magnification. The achromatic variation of CB materials have been demonstrated for the replacement of optical signal against modern remote sensing device to the imaging sensor. Color difference (Δ E), microstructural variations, pixel variations to imaging signal and standard deviation of CB materials have been represented for remote sensing surveillance of defense applications against TOB-CB-CDRI. Technical simulation of color, texture, gloss, and pixel intensity has been derived for AC-CDRI assessment of camouflage textiles in TOBs-CB environment.


2016 ◽  
Vol 53 (6) ◽  
pp. 060606
Author(s):  
侯文佐 Hou Wenzuo ◽  
王大鸣 Wang Daming ◽  
杨阳 Yang Yang

2019 ◽  
Vol 37 (4) ◽  
pp. 265-280 ◽  
Author(s):  
Md. Abdul Hannan ◽  
Papia Haque ◽  
S. M. Fijul Kabir ◽  
Mohammed Mizanur Rahman

The current work endeavored to avoid chemicals during scouring and bleaching of cotton knit fabric in order to introduce a green method. Single jersey single lacoste knit fabrics were treated in water at 105 °C, 120 °C, and 130 °C for 20, 40, and 60 min at reduced process stage. Fourier transform infrared data revealed the weakening and shifting of typical bands of wax and pectin-based cotton impurities in the region of 1,740–1,200 cm−1 for the pretreated samples at 130 °C for 20 min. Color difference (Color Measurement Committee ΔE) was found within the acceptable range for 1.5% and 1% dyed samples when treated at 105 °C for 20 min, while 0.5% dyed samples required 130 °C for 20 min to achieve the desired range. The ratings for color fastness to washing, perspiration, and rubbing were 4–5 for all the chemical-free pretreated samples. The proposed process yielded better strength and dimensional stability compared to the conventionally pretreated samples.


2020 ◽  
Vol 49 (3) ◽  
pp. 20190002 ◽  
Author(s):  
Qi Sun ◽  
Min-jun Dong ◽  
Xiao-feng Tao ◽  
Meng-da Jiang ◽  
Chi Yang

Objective: To compare and evaluate the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) values between a 15-channel phased array head coil and 6-channel dS Flex M surface coil in the MRI of temporomandibular joint. Methods: 300 patients were randomly assigned to two groups: 150 patients were examined by using a 15-channel phased array head coil and the other 150 patients were scanned by using a 6-channel dS Flex M surface coil. All of the data were set in the same 6 regions of interest including the temporal lobe, condyle neck, lateral pterygoid muscle, parotid gland, the adipose area and an area of the background noise). SNR and CNR values were measured respectively. Results: The numerical variation law of SNR and CNR values measured in regionsof interest of each group was similar, although different coils were used. There were statistically significant differences of SNR values in all of the oblique sagittal (OSag) proton density-weighted imaging, the part of OSag T 2 weighted image (T 2WI) except for SNR4 and SNR5. and oblique coronal (OCor) T 2WI sequence except for SNR2. On the contrary, SNR4 and SNR5 values in the OCor T 2WI and SNR5 values in OSag T 2WI sequences by using the surface coil were higher than those by using the head coil. There were no statistically significant intergroup differences of CNR values in OSag proton density-weighted imaging sequence except CNR1 and in OSag T 2WI sequence except CNR5. But, statistically significant differences of all the values in the OCor T 2WI sequence except for CNR1 were observed. Conclusion: Both the phased array head coil and dS Flex M surface coil can be used for temporomandibular joint MRI.


Sign in / Sign up

Export Citation Format

Share Document