Atomistic Simulation of the Self-Diffusion in Very Thin Cu (001) Film by Using MAEAM

2014 ◽  
Vol 1015 ◽  
pp. 37-41
Author(s):  
Yan Ni Wen ◽  
Xiao Bin Fang ◽  
Xiao Fei Jia

The self-diffusion in very thin Cu (001) film that formed by 2~11 atomic layers have been studied by using modified analytic embedded atom method (MAEAM) and a molecular dynamic (MD) simulation. The vacancy formation is the most easily in of Cu (001) thin film formed by any layers. The vacancy formation energy 0.5054eV in of the Cu (001) thin film formed by layers is the highest in all the values in the ones that formed by layers. The vacancy in and 3 is easily migrated to layer, and the vacancy in is easily migrated in intra-layer, and the vacancy in is easily migrated to when the corresponding atomic layer is existed. The vacancy formation and diffusion will not be affected by the atomic layer when the Cu (001) thin film is formed by more than ten layers ().

2019 ◽  
Vol 87 (3) ◽  
pp. 31301 ◽  
Author(s):  
Hicham El Azrak ◽  
Abdessamad Hassani ◽  
Abdelhadi Makan ◽  
Fouad Eddiai ◽  
Khalid Sbiaai ◽  
...  

In this paper, molecular dynamics (MD) simulation of surface morphology during homoepitaxial growth of Copper was investigated. For this purpose, simulations of Cu deposition on the Cu(111) substrate with an incidence energy of 0.06 eV at 300K were performed using the embedded-atom method (EAM). The grown thin film on Cu(111) reveled a rough surface morphology. During deposition, the important fraction of atoms intended for the upper layers undergone a rising rate of about 40% starting from the 2nd period and continued to increase until 65%, while the lower level reached a permanent rate of only 25% by the 4th period. Otherwise, except at the first layer level, the lower layers are incomplete. This void in the lower layers has favored the growth of the upper layers until a rate of 143% and has accelerated their time appearance. Th incidence energy has favored the filling of lower layers by reducing this surface roughness. However, the temperature effect needs more relaxation time to fill the lower layers.


1996 ◽  
Vol 458 ◽  
Author(s):  
Yuri Mishin ◽  
Diana Farkas

ABSTRACTUsing embedded atom potentials and molecular statics we calculate the structure and energy of [001] tilt grain boundaries in NiAl for 25 orientations with Σ values from 5 to 185. For three structures (stoichiometric, Ni-rich and Al-rich) of the Σ = 5 (210) boundary we simulate tracer self-diffusion by the vacancy mechanism both parallel and perpendicular to the tilt axis using the Monte Carlo technique. The effective activation energy calculated in a wide temperature range is compared with the spectrum of individual jump energies in the boundary core. The results are interpreted in terms of the grain boundary structure-diffusion relationship and the role of the jump correlation effect in grain boundary diffusion.


1991 ◽  
Vol 6 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Miki Nomura ◽  
Sing-Yun Lee ◽  
James B. Adams

Vacancy diffusion along two different high-angle twist grain boundaries (Σ5 and Σ13) was studied using the Embedded Atom Method (EAM). Vacancy formation energies in all the possible sites were calculated and found to be directly related to the degree of coincidence with the neighboring crystal planes. Optimal migration paths and migration energies were determined and found to be very low. The activation energies for self-diffusion at the boundaries were found to be less than half of the bulk value.


2013 ◽  
Vol 750-752 ◽  
pp. 579-582
Author(s):  
Teng Fang ◽  
Li Wang ◽  
Yu Qi

Molecular dynamics (MD) simulation has been performed to explore the microstructure, thermodynamics and dynamics properties of liquid Fe-Ni alloy based upon two different embedded atom method (EAM) models. The calculated PCFs with two EAM models are good agreement with the experimental values. While the calculated Scc (q) of Bhatia-Thornton (B-T) structure factor (SF) shows different behavior: a sharp increasing and a small one at lower q from G. Bonnys model and Zhous model respectively. The mixing of enthalpy with G. Bonnys EAM is positive in the whole concentration range. While the different mixing behavior with a slightly negative mixing of enthalpy based on Zhous model, which is consistent with the experimental results, is observed. Density and diffusion coefficients of liquid Fe-Ni as a function of composition show the same tendency based on both G. Bonnys model and Zhous model. In this work, Fe-Ni melts show different mixing behavior based on the two different EAM models.


2015 ◽  
Vol 22 (01) ◽  
pp. 1550013 ◽  
Author(s):  
FUSHENG LIU ◽  
YUFEI WANG ◽  
WANGYU HU ◽  
TENG WANG ◽  
YANHONG DING ◽  
...  

Using modified analytic embedded atom method and molecular dynamics (MDs) simulation, the self-diffusion dynamics behaviors of Pd adatom on perfect Pd (110) and reconstruction Pd (110)-(1 × 2) surfaces have been studied. Our simulations show the diffusion of Pd adatom is 1D motion along the [Formula: see text] direction of the channel on Pd (110)-(1 × 2) surface between 650 and 900 K. On perfect Pd (110) surface, the adatom diffuses along the [Formula: see text] direction of the channel in the low temperature range from 450 to 550 K by the simple hopping mechanism, and the diffusion is 2D between 600 and 800 K, the diffusion across the [Formula: see text] direction of the channel wall is by the exchange mechanism with an atom of channel wall. The diffusion dynamics behaviors have been derived from the Arrhenius law. On perfect Pd (110) surface, the diffusion dynamics behaviors along the [Formula: see text] direction of the channel may be divided into two parts in different temperature ranges. Our results show that the diffusion mobility D of Pd adatom along the [Formula: see text] direction on perfect Pd (110) surface is quicker than that on Pd (110)-(1 × 2) surface.


2003 ◽  
Vol 775 ◽  
Author(s):  
Byeongchan Lee ◽  
Kyeongjae Cho

AbstractWe investigate the surface kinetics of Pt using the extended embedded-atom method, an extension of the embedded-atom method with additional degrees of freedom to include the nonbulk data from lower-coordinated systems as well as the bulk properties. The surface energies of the clean Pt (111) and Pt (100) surfaces are found to be 0.13 eV and 0.147 eV respectively, in excellent agreement with experiment. The Pt on Pt (111) adatom diffusion barrier is found to be 0.38 eV and predicted to be strongly strain-dependent, indicating that, in the compressive domain, adatoms are unstable and the diffusion barrier is lower; the nucleation occurs in the tensile domain. In addition, the dissociation barrier from the dimer configuration is found to be 0.82 eV. Therefore, we expect that atoms, once coalesced, are unlikely to dissociate into single adatoms. This essentially tells that by changing the applied strain, we can control the patterning of nanostructures on the metal surface.


2021 ◽  
Vol 11 (15) ◽  
pp. 6801
Author(s):  
Polina Viktorovna Polyakova ◽  
Julia Alexandrovna Pukhacheva ◽  
Stepan Aleksandrovich Shcherbinin ◽  
Julia Aidarovna Baimova ◽  
Radik Rafikovich Mulyukov

The aluminum–magnesium (Al–Mg) composite materials possess a large potential value in practical application due to their excellent properties. Molecular dynamics with the embedded atom method potentials is applied to study Al–Mg interface bonding during deformation-temperature treatment. The study of fabrication techniques to obtain composites with improved mechanical properties, and dynamics and kinetics of atom mixture are of high importance. The loading scheme used in the present work is the simplification of the scenario, experimentally observed previously to obtain Al–Cu and Al–Nb composites. It is shown that shear strain has a crucial role in the mixture process. The results indicated that the symmetrical atomic movement occurred in the Mg–Al interface during deformation. Tensile tests showed that fracture occurred in the Mg part of the final composite sample, which means that the interlayer region where the mixing of Mg, and Al atoms observed is much stronger than the pure Mg part.


2020 ◽  
Vol 978 ◽  
pp. 436-445
Author(s):  
Mouparna Manna ◽  
Snehanshu Pal

In this present study, molecular dynamics (MD) simulation has been performed to investigate the influence of applied hydrostatic compressive and tensile pressure on glass forming process of Ni62Nb38 bimetallic glass using embedded atom method (EAM). During fast cooling (~10 K ps-1), tensile and compressive pressure has been applied having 0.001 GPa,0.01 GPa and 0.1 GPa magnitude. The glass transition temperature (Tg) for each pressurized (Tensile and Compressive nature) cooling case has been calculated and Tg is found to be dependent on both magnitude and nature of the pressure applied during cooling process.Voronoi cluster analysis has also been carried out to identify the structural evaluation during hydrostatically pressurised fast cooling process. In case of both hydrostatic tensile and compressive pressurised cooling processes, Tgincreases with the increase of pressure from 0.001 GPa to 0.1 GPa in magnitude.


Sign in / Sign up

Export Citation Format

Share Document