Mechanical Characteristic Changes of Carbon Fiber Reinforced Plastics (CFRP) Depending on the Lamination Methods

2014 ◽  
Vol 1016 ◽  
pp. 130-134
Author(s):  
In Pyo Cha ◽  
Hee Jae Shin ◽  
Min Sang Lee ◽  
Sung Woo Hong ◽  
Jin Young Kwon ◽  
...  

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, tensile test and infrared thermal device during the tensile tests, to obtain a better property than the existing lamination methods. the tensile test result showed that the newly designed three lamination methods, i.e. Roll, Half and Zigzag lamination methods, appeared superior to the Play lamination method in the aspects of the strength and strain. The strength of the Zigzag lamination method, which was the highest, was confirmed as being improved by about 20% than that of the Ply method.

2001 ◽  
Vol 0 (1) ◽  
pp. 7-11
Author(s):  
E. A. Kosenko ◽  
◽  
N. I. Baurova ◽  
V. A. Zorin ◽  
◽  
...  

The technology of creating specimens of carbon fiber reinforced plastic with different types of hybrid matrices is described, one of the components of which retains its viscoelastic state, and the second is completely cured during the molding process. Technical wax, anaerobic and organosilicon polymeric materials are accepted as viscoelastic components of the hybrid matrix. The results of mechanical tensile tests of these specimens, performed at temperatures t1 = 20 ± 2 °С and t2 = –30 °С are presented.


2014 ◽  
Vol 1017 ◽  
pp. 411-414
Author(s):  
Takayuki Kitajima ◽  
Jumpei Kusuyama ◽  
Akinori Yui ◽  
Katsuji Fujii ◽  
Yosuke Itoh

Interest in carbon-fiber-reinforced plastic (CFRP) has been growing for the last several years. CFRP, a composite material made of carbon fibers and resins, has high mechanical characteristics and is well known as a difficult-to-cut material. During the process of drilling or cutting of CFRP, tool wear and delamination occur frequently. In this study, the authors developed a milling tool for CFRP using polycrystalline diamond, and the cutting performance of the developed tool was investigated.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110125
Author(s):  
Jian Li ◽  
Xiaoxu Lai ◽  
Peng Zou ◽  
Wei Guo ◽  
Cuiyong Tang

Interference-fit is attracting increasing attention in the aerospace field because of its excellent enhancement of the sealing and fatigue life of carbon fiber reinforced plastic (CFRP). However, it also induces imbalanced pre-tightening forces on the interface, and affects its mechanical behavior. A series of experiments were conducted to assess the imbalanced pre-tightening force of CFRP interference bolted joints and its effects. High-precision washer force sensors were used to measure the pre-tightening force between upper and lower surfaces at various interference-fit and torque. Strain gauges were used to estimate the varying effect on the imbalanced pre-tightening force during tensile tests. The effects of varying interference-fit and torque on pre-loaded transfer, surface strain distribution, tensile strength, and damage mode were identified. The results show that the synergy of interference-fit and torque induces an imbalanced pre-tightening force, which, in turn, changes the stress-strain evolution of the surface, and a special “transition regime” was identified in the evolution curves. Compared with clearance-fit, the ultimate strength and optimal torque of interference-fit joints could be significantly enhanced. In addition, the damage originates from fiber/matrix slipping to the upper surface with a low pre-tightening force and the formation of stack buckling, which then causes delamination fracture.


Author(s):  
Ali Saifullah ◽  
Mohammad Jufri ◽  
Dini Kurniawati ◽  
Risky Chandra

Research on material engineering is widely developed in the precursors, composition of the material, and technique to create a composite. The layering and vacuum infusion resin are the developing technology to create the composites with the new characteristics and properties. This experiment is intended to find out the characteristics of layering carbon fiber reinforced by resin and is molded with vacuum infusion technique. The specimens of this experiment is layered-carbon fiber composites determined in three, four, five, six, and seven layers. The precursors of 220 and 240 carbon fibers are the main material of the composites. The tests conducted to the specimens are bending and tensile tests. The both tests are treated to reveal the mechanical properties of the composites. The least layers of 220 and 240 carbon fiber result the highest value of bending test, but the most number of carbon fiber layers show the opposite value. The results are reverse in the tensile test. The highest value of the tensile test is achieved by the most layers of carbon fiber, while the lowest value is in the least layers. This result is almost the same with the strain-stress, but overall the graphic is similarly increase to the most layers. Deduction achieved in this experiment is that the number of layers in the carbon fiber composites is significantly influencing the mechanical properties of the composite.


2018 ◽  
Vol 38 (8) ◽  
pp. 351-368 ◽  
Author(s):  
KM John ◽  
S Thirumalai Kumaran ◽  
Rendi Kurniawan ◽  
Ki Moon Park ◽  
JH Byeon

The applications of carbon fiber reinforced plastic materials have increased widely in the fields of aerospace, automotive, maritime, and sports equipment because of their excellent mechanical properties. Machining of carbon fiber reinforced plastics has a considerably more complex effect on drilling qualities than machining of conventional metals and their alloys due to the nonlinear, inhomogeneous, and abrasive nature of CFRPs. This article addresses the methodologies that have been adopted to minimize the material damages in drilling of polymeric composite materials. Key papers are reviewed with respect to tool types, materials, geometry and coatings, back-up plate, coolants, environment, unconventional machining, and high-speed drilling methodologies, which influence the hole qualities of delamination, burr, surface roughness, cylindricity, diameter error, and thermal damage with the effect of cutting variables (spindle speed and feed rate). In addition, some deburring strategies are also reviewed and discussed.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4984 ◽  
Author(s):  
Kenichi Katabira ◽  
Hiroki Kurita ◽  
Yu Yoshida ◽  
Fumio Narita

Carbon fiber reinforced plastic (CFRP) is an excellent choice in the areas where weight reduction is important and multi-functionalization of CFRP, especially by adding sensor capabilities, is a promising approach to realize lightweight battery-free devices in structural health monitoring (SHM). In this study, we fabricated hybrid CFRP with Fe-Co fibers and evaluated the inverse magnetostrictive response characteristics. It was shown that the measured magnetic flux density of the CFRP fluctuates in response to cyclic bending load. It was also revealed that our Fe-Co fiber inserted CFRP has damage self-sensing ability. In addition, it seems that the optimization of design and more experimental and numerical investigation improves the capability of the hybrid CFRP with Fe-Co fiber as sensor composite materials.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Alexander M. Scruggs ◽  
Sebastian Kirmse ◽  
Kuang-Ting Hsiao

This study experimentally and analytically examined the influence of carbon nanofiber (CNF) z-threads on the through-thickness (i.e., z-direction) thermal conductivity of unidirectional carbon fiber reinforced plastics (CFRPs). It was hypothesized that a network of CNF z-threads within CFRPs would provide a thermally conductive microstructure throughout the sample thickness that would increase the through-thickness thermal conductivity. The experiments showed that the through-thickness thermal conductivity of the CNF z-threaded CFRPs (9.85 W/m-K) was approximately 7.53 times greater than that of the control CFRPs (1.31 W/m-K) and 2.73 times greater than that of the unaligned CNF-modified CFRPs (3.61 W/m-K). Accordingly, the CNF z-threads were found to play a substantial role in increasing the through-thickness thermal conductivity of CFRPs. To better understand the role of the CNF z-threads in through-thickness thermal transport, simple logical models of the CFRPs were constructed and then compared with the experimental results. Through these analyses, it was determined that CNF z-threads substantially enhance the through-thickness thermal conductivity by creating carbon fiber-CNF linkages throughout the CFRP laminate; these linkages allow the heat flow to largely bypass the resistive resin that envelops the carbon fibers. In addition, thermal infrared tests illustrated that the increased through-thickness thermal conductivity of the CNF z-threaded CFRP enabled the location and visualization of defects within the laminate, which was not possible with the control CFRP.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


2021 ◽  
pp. 073168442098359
Author(s):  
Luyao Xu ◽  
Jiuru Lu ◽  
Kangmei Li ◽  
Jun Hu

In this article, a micro-heterogeneous material simulation model with carbon fiber and resin phase about laser ablation on carbon fiber reinforced plastic (CFRP) is established by Ansys. The ablation process of CFRP by nanosecond ultraviolet laser is simulated, and the mechanism of pulse energy and spot spacing on the heat-affected zone (HAZ) is studied, then the process parameters are optimized with the goal of HAZ size and processing efficiency, and finally the validity of the model is verified by experiments. It is found that the residual gradient and the width of the radial HAZ increase with the increase of the spot spacing, and the width of the axial HAZ decreases slightly with the increase of the spot spacing, which indicates the existence of the optimal spot spacing. Second, the ablation depth increases with the increase of the pulse energy, and the carbon fiber retains a relatively complete degree of exposure when the pulse energy is low, which has a certain guiding significance for the cleaning and bonding of CFRP.


Sign in / Sign up

Export Citation Format

Share Document