Gait of a Biped Robot Implemented on a FPGA

2014 ◽  
Vol 1016 ◽  
pp. 705-709
Author(s):  
Crhistian C.G. Segura ◽  
Jairo Cortes

A biped robot based its mobility imitating human movements; this development is focused on the movement of the lower limbs. The mobility of the robot is made by servomotors; because they work in a very similar way as the joints of the human’s lower limbs but with some restrictions. The logic of this system was coded on VHDL language to be implemented in a FPGA. The reason for using this hardware; is because it had fast reaction speed, its implementation is friendly and versatile also is able to handle multiple processes in parallel. This paper describes the servo characteristics and how it was used to through an FPGA make possible move a robot who imitates the human movements in the sagittal plane, also show the mechanical design. Shows that the FPGA is better suited in this case than a micro controller to follow multiple paths at the same time.

2018 ◽  
Vol 34 (6) ◽  
pp. 496-502 ◽  
Author(s):  
Antoine Falisse ◽  
Sam Van Rossom ◽  
Johannes Gijsbers ◽  
Frans Steenbrink ◽  
Ben J.H. van Basten ◽  
...  

Musculoskeletal modeling and simulations have become popular tools for analyzing human movements. However, end users are often not aware of underlying modeling and computational assumptions. This study investigates how these assumptions affect biomechanical gait analysis outcomes performed with Human Body Model and the OpenSim gait2392 model. The authors compared joint kinematics, kinetics, and muscle forces resulting from processing data from 7 healthy adults with both models. Although outcome variables had similar patterns, there were statistically significant differences in joint kinematics (maximal difference: 9.8° [1.5°] in sagittal plane hip rotation), kinetics (maximal difference: 0.36 [0.10] N·m/kg in sagittal plane hip moment), and muscle forces (maximal difference: 8.51 [1.80] N/kg for psoas). These differences might be explained by differences in hip and knee joint center locations up to 2.4 (0.5) and 1.9 (0.2) cm in the posteroanterior and inferosuperior directions, respectively, and by the offset in pelvic reference frames of about 10° around the mediolateral axis. The choice of model may not influence the conclusions in clinical settings, where the focus is on interpreting deviations from the reference data, but it will affect the conclusions of mechanical analyses in which the goal is to obtain accurate estimates of kinematics and loading.


2017 ◽  
Vol 17 (07) ◽  
pp. 1740013 ◽  
Author(s):  
XIZHE ZANG ◽  
ZHENKUN LIN ◽  
XINRAN SUN ◽  
YIXIANG LIU

Human lower limbs have particular flexibility. Both the efficiency of bipedal walking and the ability to protect actuators with low energy loss are worthy references for the design of bipedal robots. This paper proposes a design for a biped robot with joints of variable stiffness. The robot has three degrees of freedom in the sagittal plane in each leg. The hips and knees are driven directly by the motor, while the ankles are passive joints with adjustable stiffness. After a comprehensive investigation, a variable stiffness mechanism was introduced based on lever principles, and driven by a motor that can realize real-time adjustment. Simulations verified the necessity of variable stiffness joints in the robot. The variable stiffness joint can absorb the ground impact on each joint, reduce the energy loss of the motor, and improve the efficiency of movement.


2009 ◽  
Vol 6 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Giuseppina Gini ◽  
Umberto Scarfogliero ◽  
Michele Folgheraiter

This paper presents a human-oriented approach to design the mechanical architecture and the joint controller for a biped robot. Starting from the analysis of the human lower limbs, we figured out which features of the human legs are fundamental for a correct walking motion, and can be adopted in the mechanical design of a humanoid robot. We focus here on the knee, designed as a compliant human-like knee instead of a classical pin-joint, and on the foot, characterised by the mobility and lightness of the human foot. We implemented an elastic actuator, with a simple position control paradigm that sets the joint stiffness in real time, and developed the basic controller. Results in simulation are discussed. In our approach the robot gains in adaptability and energetic efficiency, which are the most challenging issues for a biped robot.


Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.


2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


1998 ◽  
Vol 79 (4) ◽  
pp. 2155-2170 ◽  
Author(s):  
L. Bianchi ◽  
D. Angelini ◽  
G. P. Orani ◽  
F. Lacquaniti

Bianchi, L., D. Angelini, G. P. Orani, and F. Lacquaniti. Kinematic coordination in human gait: relation to mechanical energy cost. J. Neurophysiol. 79: 2155–2170, 1998. Twenty-four subjects walked at different, freely chosen speeds ( V) ranging from 0.4 to 2.6 m s−1, while the motion and the ground reaction forces were recorded in three-dimensional space. We considered the time course of the changes of the angles of elevation of the trunk, pelvis, thigh, shank, and foot in the sagittal plane. These angles specify the orientation of each segment with respect to the vertical and to the direction of forward progression. The changes of the trunk and pelvis angles are of limited amplitude and reflect the dynamics of both right and left lower limbs. The changes of the thigh, shank, and foot elevation are ample, and they are coupled tightly among each other. When these angles are plotted one versus the others, they describe regular loops constrained on a plane. The plane of angular covariation rotates, slightly but systematically, along the long axis of the gait loop with increasing V. The rotation, quantified by the change of the direction cosine of the normal to the plane with the thigh axis ( u 3 t ), is related to a progressive phase shift between the foot elevation and the shank elevation with increasing V. As a next step in the analysis, we computed the mass-specific mean absolute power ( P u ) to obtain a global estimate of the rate at which mechanical work is performed during the gait cycle. When plotted on logarithmic coordinates, P u increases linearly with V. The slope of this relationship varies considerably across subjects, spanning a threefold range. We found that, at any given V > 1 m s−1, the value of the plane orientation ( u 3 t ) is correlated with the corresponding value of the net mechanical power ( P u ). On the average, the progressive rotation of the plane with increasing V is associated with a reduction of the increment of P u that would occur if u 3 t remained constant at the value characteristic of low V. The specific orientation of the plane at any given speed is not the same in all subjects, but there is an orderly shift of the plane orientation that correlates with the net power expended by each subject. In general, smaller values of u 3 t tend to be associated with smaller values of P u and vice versa. We conclude that the parametric tuning of the plane of angular covariation is a reliable predictor of the mechanical energy expenditure of each subject and could be used by the nervous system for limiting the overall energy expenditure.


1997 ◽  
Vol 18 (12) ◽  
pp. 792-797 ◽  
Author(s):  
Jennifer S. Wayne ◽  
Keith W. Lawhorn ◽  
Kenneth E. Davis ◽  
Karanvir Prakash ◽  
Robert S. Adelaar

Contact areas and peak pressures in the posterior facet of the subtalar and the talonavicular joints were measured in cadaver lower limbs for both the normal limb and after fixation of the tibiotalar joint. Six joints were fixed in neutral, in 5–7° of varus and of valgus. Ten degrees of equinus angulation was also studied. Each position of fixation was tested independently. Neutral was defined as fixation without coronal or sagittal plane angulation compared with prefixation alignment of the specimen. When compared with normal unfused condition, peak pressures increased, and contact areas decreased in the subtalar joint for specimens fixed in neutral, varus, and valgus. However, the change in peak pressure for neutral fusion compared with normal control was not statistically significant ( P > 0.07). Peak pressures for varus and valgus fixation were significantly different from normal ( P < 0.001). Contact areas for all positions of fixation were significantly different from normal ( P < 0.001). Coronal plane angulation, however, also resulted in significantly lower contact areas compared with neutral fixation ( P < 0.001). Contact areas and peak pressures in the talonavicular joint did not appear to be substantially affected by tibiotalar fixation with coronal plane angulation. Equinus fixation qualitatively increased contact areas and peak pressures in the talonavicular and posterior facet of the subtalar joint. Neutral alignment of the tibiotalar joint in the coronal and sagittal planes altered subtalar and talonavicular joint contact characteristics the least compared with normal controls. Therefore, ankle fusion in the neutral position would be expected to most closely preserve normal joint biomechanics and may limit the progression of degenerative arthrosis of the subtalar joint.


2012 ◽  
Vol 35 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Wanda Forczek ◽  
Robert Staszkiewicz

For many years, mainly to simplify data analysis, scientists assumed that during a gait, the lower limbs moved symmetrically. However, even a cursory survey of the more recent literature reveals that the human walk is symmetrical only in some aspects. That is why the presence of asymmetry should be considered in all studies of locomotion. The gait data were collected using the 3D motion analysis system Vicon. The inclusion criteria allowed the researchers to analyze a very homogenous group, which consisted of 54 subjects (27 women and 27 men). Every selected participant moved at a similar velocity: approximately 1,55 m/s. The analysis included kinematic parameters defining spatio-temporal structure of locomotion, as well as angular changes of the main joints of the lower extremities (ankle, knee and hip) in the sagittal plane. The values of those variables were calculated separately for the left and for the right leg in women and men. This approach allowed us to determine the size of the differences, and was the basis for assessing gait asymmetry using a relative asymmetry index, which was constructed by the authors. Analysis of the results demonstrates no differences in the temporal and phasic variables of movements of the right and left lower limb. However, different profiles of angular changes in the sagittal plane were observed, measured bilaterally for the ankle joint.


2013 ◽  
Vol 461 ◽  
pp. 894-902 ◽  
Author(s):  
Zhi Wei Yu ◽  
Li Quan Wang ◽  
Peng Wang ◽  
Zhen Dong Dai

During the design of biped robot HEUBR_1, a new structure of tandem and parallel connection is used in lower-limbs, adding toe-joints to feet. In order to make sure the rationality of humanoid structure design and feasibility of the humanoid gait planning, we built the simulating model of biped robot HEUBR_1 by using software ADAMS. The simulating model of biped robot HEUBR_1 walked stably with toe-joints in fictitious surrounding, which used the motion data exported by humanoid gait planning. During humanoid gait simulation, the biped robot kinematic and dynamical characteristics were achieved. Simulation indicates that the structure of tandem and parallel connection is rational and the method of humanoid gait planning is feasible. Humanoid walking with toe-joints has the characteristic: balanced motion, lower energy and small impact on feet. Simulated data of steady walking will be used as reference for biped robot HEUBR_1 walking experiments.


Sign in / Sign up

Export Citation Format

Share Document