scholarly journals Impact Energy Absorption Capability of Polygonal Cross-Section Thin-Walled Beams under Lateral Impact

Author(s):  
Sanjay Patil ◽  
Arvind Bhosale ◽  
Vijaypatil Dhepe ◽  
Dheeraj Lengare ◽  
Ravi Kakde

The continuing efforts of automotive technology aim to deliver even greater safety benefits and reduce the weight of a vehicle. Thin-walled beams (TWB) are widely used as strengtheners or energy absorbers in vehicle bodies due to their lightweight and excellent energy absorption capacity. Thus, researchers are interested in the collapse behaviour and mechanical properties of thin-walled beams under static and dynamic loadings. Circular TWB is commonly used in vehicle side doors. In the event of a side collision, this beam deforms and absorbs the greatest amount of impact energy. In this study, the energy absorption capability and crashworthiness of polygonal cross-section TWBs subjected to lateral impact was investigated using numerical simulations. Polygonal TWB ranging from square to dodecagon, as well as circular cross section, were selected for this study. Energy absorption (EA), specific energy absorption (SEA) and crash force efficiency (CFE) crashworthiness indicators are employed to evaluate the bending collapse performance. Because TWB thickness and weight have a greater impact on bending performance, they were kept constant across all polygons. In ABAQUS explicit dynamic software, finite element simulations are performed, and plastic hinges and flattening patterns of all polygons are examined. The results show that heptagon, octagon, and nonagon cross-section TWB perform better in crashworthiness than square and circular TWB.

2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2019 ◽  
Vol 252 ◽  
pp. 07005 ◽  
Author(s):  
Quirino Estrada ◽  
Dariusz Szwedowicz ◽  
Alejandro Rodriguez-Mendez ◽  
Jesús Silva-Aceves ◽  
Lara C. Wiebe ◽  
...  

The study of bending behaviour of thin-walled structures has gained importance since lateral impact is the second most common scenario in automobile crashes. The current paper analyses an effect of partition plates on energy absorption (Ea) of circular profiles under lateral loads. For this purpose, several numerical analyses using Abaqus/Explicit finite element software were carried out. The evaluated specimens have circular cross-sections reinforced by different arrangement of partition plates. In order to get reliable outcome, special emphasis was placed on damage modelling by Johnson-Cook failure model for aluminium. From the results considering a single profile, better Ea was registered for structures with plates in a range from 6% to 34%. Reduction in peak load (Pmax) up to 13% and an increase in crush force efficiency (CFE) in 14.86% was also computed. Regarding profiles with plates, it was determined that crashworthiness performance depends on an arrangement of plates on the cross-section more than their thickness and number. Better performance was obtained when the circular cross-section was reinforced in the longitudinal and transversal direction by 4 plates.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4857
Author(s):  
Michal Rogala ◽  
Jakub Gajewski ◽  
Miroslaw Ferdynus

Crashworthiness of conical shells is known to depend on various factors. This study sets out to determine the extent to which the cross-sectional diameter contributes to their energy-absorbing properties. The object of the study was thin-walled aluminium tubes varying in upper diameter and wall thickness. The components were subjected to dynamic axial crushing kinetic energy equal to 1700 J. The numerical analysis was performed using Abaqus 6.14 software. The specific aim of the study was to determine the extent to which variable wall thickness affects the energy absorption capacity of the components under study. From the simulations, we have managed to establish a relationship between total energy absorption capacity and wall thickness. The results from the conducted analyses and the purpose-specific neural networks could provide the base for the future methodology for forecasting and optimisation of energy-absorbing systems.


2009 ◽  
Vol 417-418 ◽  
pp. 17-20 ◽  
Author(s):  
Qing Fen Li ◽  
Yan Jie Liu ◽  
Hai Dou Wang ◽  
Sheng Yuan Yan

Thin walled tubes, particularly those of square or circular cross-section, are the common types of automobile crash-box, which equipped at the front end of a car, is one of the most important automotive parts for crash energy absorption. In the present work, energy absorption characters of square and circular cross-section thin walled tubes at low-velocity frontal impact are investigated respectively by using finite element (FE) method. The numerical simulations were carried out using the software LS-DYNA. The tubes were modeled using shell element of designation Belytschko-Tsay, which is suitable for large strain analyses. The FE model of the tube was validated by comparing the theoretical calculation results, experimental results and FE model results. Results show that on average the difference of these results was within 10%. The good correlation of results obtained show that the numerical analyses are reliable.


2014 ◽  
Vol 599 ◽  
pp. 141-144 ◽  
Author(s):  
M. Afrasiab ◽  
G. Faraji ◽  
V. Tavakkoli ◽  
M.M. Mashhadi ◽  
A.R. Bushroa

Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled axial members are typically used in automobiles’ side and front chassis to improve crashworthiness of vehicles. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of inclusion of functionally graded cellular structures in thin walled members under axial compressive loading. A compact functionally graded composite cellular core was introduced inside a cross tube with side length and wall thickness of 25.4 mm and 3.048 mm, respectively. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were evaluated. The results showed that the inclusion of composite graded cellular structure increased the energy absorption capacity of the cross tube significantly. The composite graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the cross tube thus delaying local tube wall collapse and promoting large localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that were observed in the empty cross tube under axial compressive loading. The variation in deformation mode resulted in enhanced stiffness of the composite structure, and therefore, high energy absorption by the structure. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.


2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Zhe Chen ◽  
Tonghao Wu ◽  
Guodong Nian ◽  
Yejie Shan ◽  
Xueya Liang ◽  
...  

Energy absorption structures are widely used in many scenarios. Thin-walled members have been heavily employed to absorb impact energy. This paper presents a novel, Ron Resch origami pattern inspired energy absorption structure. Experimental characterization and numerical simulations were conducted to study the energy absorption of this structure. The results show a new collapse mode in terms of energy absorption featuring multiple plastic hinge lines, which lead to the peak force reduction and larger effective stroke, as compared with the classical honeycomb structure. Overall, the Ron Resch origami-inspired structure and the classical honeycomb structure are quite complementary as energy absorption structures.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4304
Author(s):  
Miroslaw Ferdynus ◽  
Patryk Rozylo ◽  
Michal Rogala

The paper presents the results of numerical tests of impact and energy absorption capacity of thin-walled columns, subjected to axial impact loading, made of aluminum alloy, and having a square cross-section and spherical indentations on their lateral surfaces. The numerical models were validated using an experiment that was conducted on the Instron CEAST 9350 High Energy System drop hammer. Material properties of the applied aluminum alloy were determined on the basis of a static tension test. The crushing behavior of the columns and some crashworthiness indicators were investigated. On the basis of the results of the conducted analyses, conclusions were drawn about the most beneficial design/constructional variants in terms of achieved crashworthiness parameters.


2012 ◽  
Vol 229-231 ◽  
pp. 1120-1124
Author(s):  
Sajjad Dehghanpour ◽  
Sobhan Dehghanpour

Impact is one of very important subjects which always have been considered in mechanical science. Nature of impact is such that which makes its control a hard task. Therefore it is required to present the transfer of impact to other vulnerable part of a structure, when it is necessary, one of the best method of absorbing energy of impact , is by using Thin-walled tubes these tubes collapses under impact and with absorption of energy, it prevents the damage to other parts. Purpose of recent study is to survey the deformation and energy absorption of tubes with different type of cross section (rectangular or square) and with similar volumes, height, mean cross section, and material under loading. Lateral loading of tubes are quasi-static type and beside as numerical analysis, also experimental experiences has been performed to evaluate the accuracy of the results. Results from the surveys is indicates that in a same conditions which mentioned above, samples with square cross section ,absorb more energy compare to rectangular cross section, and also by increscent in thickness, energy absorption would be more.


Sign in / Sign up

Export Citation Format

Share Document