scholarly journals Experimental and numerical study of the crushing behavior of pultruded composite tube structure

2020 ◽  
Vol 40 (7) ◽  
pp. 615-627
Author(s):  
Mohd Kamal Mohd Shah ◽  
Yeo Kiam Beng ◽  
Sanjay Mohan ◽  
Mohd Nizam Husen ◽  
Irma Othman ◽  
...  

AbstractPultrusion is considered to be a cost efficient method for developing composite structures. It facilitates the fabrication of uniform cross-section products with improved fiber alignment, mechanical properties, good surface characteristics, etc. In order to ascertain the crashworthiness, the pultruded composites shall be able to resist impact loads, and in this concern, the energy absorption capacity of the pultruded composites must be explored. This article presents the experimental and numerical investigation of the crushing behavior of polyester based pultruded composite with rectangular cross section. Pultruded rectangular tubes with e-glass/polyester composites have been developed for this study. The cross-section of the tubes was developed into two triggering profiles, the uniform edge around the section and the tulip pattern. The tubes were subjected to impact loads, and the effect of these triggering profiles on the energy absorption capacity of the tubes has been investigated. The testing of all composites has been carried out at three different impact velocities (10, 20 and 45 mm/min). The results have revealed the dependence of crushing behavior of the tubes on the loading velocity and the triggered profiles. Lower peak load and high specific energy absorption (SEA) was observed in the tube with tulip pattern profile. The results obtained from the simulation have also shown consistency with the real-time experiments.

2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2016 ◽  
Vol 725 ◽  
pp. 156-161
Author(s):  
Tsutomu Umeda ◽  
Kohei Kataoka ◽  
Koji Mimura

The axial crushing behavior of commercial metal honeycombs was studied with laying emphasis on the effects of strain rate and geometry on its characteristics as an energy absorber. To investigate the effect of strain rate on the energy absorption capacity, the honeycombs of some metal foil materials were numerically modeled by taking the plastic deformation and failure of adhesively-bonded joint between corrugated sheets and the initial imperfection into consideration. The relationship between the enhancement of mean buckling stress and the strain rate was discussed. Furthermore, A3003 honeycomb model was examined by changing its branch angle from 30° to 180° because the geometrical dispersion will also affect the energy absorption capacity. Typical calculated results under different strain rate and geometric conditions were compared with the corresponding experimental results. It was found that the effect of strain rate on the stress – strain relation of the honeycomb structure is greatly relaxed as compared with that of the material itself. The effects of the boundary condition on the crushing behavior of irregular honeycombs were also discussed.


Author(s):  
Mehmet Ali Güler ◽  
Muhammed Emin Cerit ◽  
Sinem Kocaoglan Mert ◽  
Erdem Acar

In this study, the energy absorption capacity of a front body of a bus during a frontal crash was investigated. The strength of the bus structure was examined by considering the ECE-R29 European regulation requirements. The nonlinear explicit finite element code LS-DYNA was used for the crash analyses. First, the baseline bus structures without any improvements were analyzed and the weak parts of the front end structure of the bus body were examined. Experimental tests are conducted to validate the finite element model. In the second stage, the bus structure was redesigned in order to strengthen the frontal body. Finally, the redesigned bus structure was compared with the baseline model to meet the requirements for ECE-R29. In addition to the redesign performed on the body, energy absorption capacity was increased by additional energy absorbers employed in the front of bus structure. This study experimentally and numerically investigated the energy absorption characteristics of a steering wheel armature in contact with a deformable mannequin during a crash. Variations in the location of impact on the armature, armature orientation, and mannequin were investigated to determine the effects of the energy absorption characteristics of the two contacting entities.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4304
Author(s):  
Miroslaw Ferdynus ◽  
Patryk Rozylo ◽  
Michal Rogala

The paper presents the results of numerical tests of impact and energy absorption capacity of thin-walled columns, subjected to axial impact loading, made of aluminum alloy, and having a square cross-section and spherical indentations on their lateral surfaces. The numerical models were validated using an experiment that was conducted on the Instron CEAST 9350 High Energy System drop hammer. Material properties of the applied aluminum alloy were determined on the basis of a static tension test. The crushing behavior of the columns and some crashworthiness indicators were investigated. On the basis of the results of the conducted analyses, conclusions were drawn about the most beneficial design/constructional variants in terms of achieved crashworthiness parameters.


The aim of this study is to examine the effect of fiber mat’s density and deformation mechanism of tubes with and without die compression. In this study a new mode of deformation mechanism of density graded GFRP circular tube is examined when they are subjected to axial compression on to a die and without die to examine its energy absorbing capacity. Theoretical calculations were made to predict the crushing stress of different specimens. It is observed that increasing density of fiber increases energy absorption value but decreases the specific energy absorption and the die could trigger progressive crushing additionally decreasing peak load. Here the compressed tube wall is compelled to be deformed towards the end of compression die with a little range of bending curvature which was forced by the radius of the die at high crushing stress and the major part of the deformation takes place at a nearly constant load, which leads to high energy absorption capacity. Comparison between theoretical prediction values by derived equations and the experimental results shows good correlation.


2019 ◽  
Vol 54 (10) ◽  
pp. 1281-1304 ◽  
Author(s):  
JE Chambe ◽  
C Bouvet ◽  
O Dorival ◽  
JF Ferrero

The purpose of this study is to evaluate and compare the ability of various composite structures to dissipate the energy generated during a crash. To this end, circular composite tubes were tested in compression in order to identify their behavior and determine their absorbing capabilities using the specific energy absorption (energy absorbed per unit weight). Several composite tubular structures with different materials and architectures were tested, including hybrid composition of carbon–aramid and hybrid configuration of 0/90 UD with woven or braided fabric. Several inventive and experimental trigger systems have been tested to try and enhance the absorption capabilities of the tested structures. Specific energy absorption values up to 140 kJ.kg−1 were obtained, achieving better than most instances from the literature, reaching around 80 kJ.kg−1. Specimens with 0°-oriented fibers coincidental with the direction of compression reached the highest specific energy absorption values while those with no fiber oriented in this direction performed poorly. Moreover, it has consequently been established that in quasi-static loading, a unidirectional laminate oriented at 0° and stabilized by woven plies strongly meets the expectations in terms of energy dissipation. Incidentally, an inner constrained containment is more effective in most cases, reducing the initial peak load without drastically reducing the specific energy absorption value.


Author(s):  
M Altin ◽  
E Acar ◽  
MA Güler

This paper presents a numerical study of regular and hierarchical honeycomb structures subjected to out-of-plane impact loading. The specific energy absorption capacity of honeycomb structures via nonlinear explicit finite element analysis is investigated. The constructed finite element models are validated using experimental data available in the literature. The honeycomb structures are optimized by using a surrogate-based optimization approach to achieve maximum specific energy absorption capacity. Three surrogate models polynomial response surface approximations, radial basis functions, and Kriging models are used; Kriging models are found to be the most accurate. The optimum specific energy absorption value obtained for hierarchical honeycomb structures is found to be 148% greater than that of regular honeycomb structures.


2022 ◽  
pp. 204141962110654
Author(s):  
Tan-Trung Bui ◽  
Dhafar Al Galib ◽  
Abdelkrim Bennani ◽  
Ali Limam

The collapse of tubes under axial load is an important subject from the safety point of view, particularly in the design of energy absorbing devices used in many engineering applications. In this study, quasi-static and dynamic experiments were carried out on square thin-walled aluminum extrusions to investigate the effects of circular holes. Cutouts were introduced in the four corners of the square-section tube, not far from the end boundary of the tube, in order both to decrease the first peak load on the load-displacement characteristic and to control the collapse mode. Different aspects, such as the buckling modes and the energy absorption in quasi-static axial crushing tests, as well as dynamic effects and material rheology contributions in dynamic crushing tests, have been examined. For the dynamic tests, the parameters were the impacting mass and its velocity. The results showed a drop in the first peak function of the openings’ radius and the tube’s energy absorption capacity was kept. A comparison between static and dynamic tests results was carried out and the interpretation of the results in terms of deformation mechanism and energy absorption was discussed. Numerical simulations with the finite element code ABAQUS were conducted to confirm the experimental findings. The results of different numerical models, implicit and explicit calculations, that contribute to a basic understanding of the buckling and prediction of the crash behavior of the aluminum components without and with the cutouts are presented.


2011 ◽  
Vol 110-116 ◽  
pp. 444-450
Author(s):  
Elsadig Mahdi ◽  
A. M. S. Hamouda

An extensive experimental investigation of inplane crushing of composite hexagonal ring system between platens has been carried out. Woven roving glass/epoxy hexagonal ring system with different angles and arrangement were employed. The rings angles are varying between 45 and 70°. The wet winding process was used to fabricate the woven E-glass fabric /epoxy specimens. Four layers of woven E-glass fabric/epoxy wrapped over wooden mandrel to get thickness of about 3 mm. The composite hexagonal tubes were then cured at room temperature (32oC) for 24 hours to provide optimum hardness and shrinkage. Repeatability of the results was ensuring by performing the experiments on three identical specimens. Typical histories of their crushing mechanism are presented. Behavior of ring as regards the initial crushing load, post crushing load, energy absorbed and mode of crushing has been presented and discussed. Results showed that the crush failure loads and energy absorption capability are greatly affected by the hexagonal ring geometry, arrangement and loading conditions. As the ring angle increases the energy absorption capacity increases. Composite hexagonal ring with 70 degree exhibited the highest energy absorption capability among tested specimens. It is also found that energy absorption capability for systems crushed in-plane X2 higher than X1.


Sign in / Sign up

Export Citation Format

Share Document