Reinforced Concrete Deep Beams with Openings Strengthened Using FRP – A Review

2014 ◽  
Vol 1025-1026 ◽  
pp. 938-943 ◽  
Author(s):  
Siew Choo Chin ◽  
Nasir Shafiq ◽  
Andri Kusbiantoro ◽  
Mohd Fadhil Nuruddin

In the modern building construction, different size of openings are provided in the web of reinforced concrete (RC) deep beams to accommodate utility pipes and ducts of essential services such as electricity cable, telephone network and air-conditioning network. However, accommodation of such openings caused reduction in beam strength, stiffness and caused excessive cracking and deflection. Many investigations were conducted to study the behaviour of openings in beams and relevant strengthening options to reinstate the lost capacity. One of the strengthening options considered lamination of fiber reinforced polymer (FRP) sheets due to its superior properties such as high tensile strength and stiffness, high resistance to corrosion, excellent fatigue performance and good resistance to chemical attack. FRP lamination has been widely accepted by the research community and practicing engineers in the construction industry as the material for strengthening and rehabilitation of common problems. However, quite limited literatures contained the use of FRP to strengthen RC deep beams with openings. This paper discussed the review of eleven different articles contained study of RC deep beams with openings together with effects of strengthening using FRP sheets. The outcome of this review paper outlined the way forward and future research focus in this area.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3119
Author(s):  
Mohammed Riyadh Khalaf ◽  
Ali Hussein Ali Al-Ahmed ◽  
Abbas AbdulMajeed Allawi ◽  
Ayman El-Zohairy

To accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens to represent 40% of the overall beam depth. Moreover, finite elements (FE) analysis was validated using the experimental results to conduct a parametric study on RCCDBs strengthened with CFRP strips. The results confirmed reductions in the ultimate load by 21% and 7% for the un-strengthened and strengthened specimens, respectively, due to the large openings. Although the large openings caused reductions in capacities, the CFRP strips limited the deterioration by enhancing the specimen capacity by 17% relative to the un-strengthened one.


2021 ◽  
Vol 39 (7) ◽  
pp. 1092-1104
Author(s):  
Nabeel A. Al-Bayati ◽  
Dhiyaa H. Muhammad ◽  
Nawfal A. Abdul Jabbar

The main objectives of this study are: encouraging the production and use of self-compacting concrete, use of materials which are lightweight, easy to use, and highly efficient in the retrofitting of reinforced concrete buildings. Six deep beams specimens (L= length of 1400mm, h= height of 400mm, and b= width of 150mm) were cast using self-compacting concrete. The location of the openings is in the middle of assumed load path. Five patterns were adopted to arrange carbon fiber reinforced polymer (CFRP) strips. The cylinder compressive strength of the concrete was approximately equal for all beams and was about (44 MPa) at 28 days age. All the beams have the same steel reinforcement for shear and flexure. There have been many tests for fresh and hardened concrete. The reinforced concrete deep beams were tested up to (60%) of the ultimate load of control beams to simulate degree of damage, and then released the load. After that, the beams were retrofitted using (CFRP) strips, and then the beams were tested to failure. The study was focused on determining the vertical mid-span deflection, ultimate load, the load that causes first shear and flexural cracks, and mode of failure. The results showed that, the best increase in the ultimate failure load was (27.27%) and achieved using the inclined strips pattern and the pattern of vertical and horizontal strips together. Reduction in the deflection values for the retrofitted beams compared to the control beam by about (12-13%) due to restrictions imposed by CFRP strips and the...


2018 ◽  
Vol 12 (8) ◽  
pp. 179 ◽  
Author(s):  
Shereen K. H. Hassan ◽  
Mu`tasim S. Abdel-Jaber ◽  
Maha Alqam

Reinforced concrete structures that incorporates deep beams are generally susceptible to deterioration due to weathering effects and sulphur attacks, under-design in the detailing of concrete cover and/or reinforcement, and construction errors. In lieu of demolishing and replacing these structures, rehabilitation and strengthening using carbon fiber composites becomes a cost-effective viable alternative. Recent advances in research and innovation have introduced concrete repair and strengthening systems that are primarily based on fiber reinforced polymer composites. These systems have offered engineers the opportunity to provide additional stability to the structural elements in question and to restore the damaged portions back to their original load carrying capacity.  This paper investigates the effect of Carbon Fiber Reinforced Polymer (CFRP) composites in enhancing the flexural performance of damaged reinforced concrete deep beams. Two types of CFRP composites and epoxy were used in the experimental investigation carried out and as described by this paper: 1) high strength carbon fiber reinforced polymer (CFRP) plates, commercially known as MBrace Laminate, that are bonded using an epoxy resin specifically suited for the installation and used to strengthen existing structural members; and, 2) MBrace Fiber 230/4900, a 100% solids, low viscosity epoxy material that is used to encapsulate MBrace carbon, glass, and aramid fiber fabrics so that when it cures, it provides a high performance FRP sheet.Test samples were divided into four groups: A control group, and three rehabilitated test groups with CRFP fibers, where the main variable among them was the percent length of CRFP used along the bottom beam extreme surface between supports (i.e, for two of the groups reinforced with MBrace laminates), and the use of MBrace Fiber 230/4500 CRFP sheets on the 4th beam along its vertical sides as well as the bottom extreme face between supports. All beams had similar cross-sectional dimensions and reinforcement, and were designed to fail in flexure rather than shear. The results show that CFRP composites, both laminated and sheet type, have increased the load carrying capacity in comparison to the control specimen, where observations were recorded pertaining to the delayed formation of vertical flexural cracks at the section of maximum moment, and diagonal shear cracks at beam ends. The increase in the load carrying capacity varied among the three rehabilitated test group beams, with the 4th group showing the highest ultimate load carrying capacity when compared to the control specimen. 


Sign in / Sign up

Export Citation Format

Share Document