Multi-Point Turning System for Flexible Robot Body

2014 ◽  
Vol 1030-1032 ◽  
pp. 1602-1607
Author(s):  
Jing Jing Yu ◽  
Ya Nan Zhang ◽  
Lin Yong Shen

The direction of the flexible robot body controllable feeding has been a problem. Such as the traditional industrial endoscope applications, it is only the head can be active deflection. If the endoscope want to feed into the deep and complex structure of the unknown cavity, it is necessary to give the outside pipeline route guidance, otherwise flexible body of the endoscope is difficult to active changing direction in accordance with the environments. In this paper, a mechanical system is studied to help flexible body enable to active steering and improving initiative and flexibility in an unknown space.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alok Ranjan Sahoo ◽  
Pavan Chakraborty

Purpose The purpose of this paper is to develop a tendon actuated variable stiffness double spring based continuously tapered multi-section flexible robot and study its capability to achieve the desired bending and compression for inspection in cluttered environments. Design/methodology/approach Spring-based continuum manipulators get compressed while actuated for bending. This property can be used for the advantage in cluttered environments if one is able to control both bending and compression. Here, this paper uses a mechanics based model to achieve the desired bending and compression. Moreover, this study tries to incorporate the tapered design to help in independent actuation of the distal sections with minimal effects on proximal sections. This study is also trying to incorporate the double spring based design to minimize the number of spacers in the robot body. Findings The model was able to produce desired curvature at the tip section with less than 4.62% error. The positioning error of the manipulator is nearly 3.5% which is at par with the state-of-the-art manipulators for search and rescue operations. It was also found that the use of double spring can effectively reduce the number of spacers required. It can be helpful in smooth robot to outer world interaction without any kink. From the experiments, it has been found that the error of the kinematic model decreases as one moves from high radius of curvature to low radius of curvature. Error is maximum when the radius of curvature is infinity. Practical implications The proposed manipulator can be used for search operations in cluttered environments such as collapsed buildings and maintenance of heavy machineries in industries. Originality/value The novelty of this paper lies in the design and the proposed kinematics inverse kinematics for a spring-based continuously tapered multi-section manipulator.


Author(s):  
Antonio M. Recuero ◽  
José L. Escalona

This paper presents a method to model the flexibility of railroad tracks for the dynamic analysis of vehicle-track interaction. In addition to being a complex structure, the flexible track is infinitely long and shows small areas of deformation whose position moves with time. Due to these properties, the efficient modeling of the track as a flexible body in a multibody system formalism is a challenging problem. In this work the model is developed using the moving modes method in combination with Krylov subspaces techniques. The moving modes method that was previously presented by the authors defines the deformation modes in a trajectory frame whose position changes with respect to the flexible track. In this paper the moving modes are selected from a detailed finite element model of the track and a model order reduction technique based on Krylov subspaces. These modes of deformation are adequate to be selected as moving modes since they affect a small area of the flexible body and they are obtained by assuming the load distribution that actually takes place during the dynamic interaction. However, the most interesting property of the Krylov subspace modes is that they can be selected such that the frequency response function of the reduced order model matches that of the full model with the desired degree of accuracy. In this paper a multibody formulation of railroad vehicles and flexible tracks based on the trajectory frame is presented and applied to the numerical simulation of a full railroad car on a track with geometric irregularities.


Author(s):  
Ioannis T. Georgiou

We applied a novel sensing and data processing technique to analyze the water-interaction dynamics of a thin-walled aluminum beam filled with micro-structured material. The spatial impulse response is sensed at three spatial points in the form of ensembles of collocated acceleration signals. Processed by the powerful POD Transforms, the modal-like decomposition of collocated acceleration signals provides interesting insight on the nature of impulse-induced vibrations of this complex structure-water system. When not interacting with water, the point impulse excited structure vibrates in a dominant POD mode with energy-transfer wave form characteristics. When interacting with water, the point impulse excited structure vibrates in two POD modes. One POD mode is vibration while the other one is rigid-flexible body motion. The POD modes capture characteristics of interactions between flexible body (vibration-wave) and rigid body motions. This modal identification technique is potentially useful for reduced model identification and parameter estimation of hard to model complex structural-fluid interacting systems encountered in aerospace and ocean environments.


Author(s):  
V.V. Rybin ◽  
E.V. Voronina

Recently, it has become essential to develop a helpful method of the complete crystallographic identification of fine fragmented crystals. This was maainly due to the investigation into structural regularity of large plastic strains. The method should be practicable for determining crystallographic orientation (CO) of elastically stressed micro areas of the order of several micron fractions in size and filled with λ>1010 cm-2 density dislocations or stacking faults. The method must provide the misorientation vectors of the adjacent fragments when the angle ω changes from 0 to 180° with the accuracy of 0,3°. The problem is that the actual electron diffraction patterns obtained from fine fragmented crystals are the superpositions of reflections from various fragments, though more than one or two reflections from a fragment are hardly possible. Finally, the method should afford fully automatic computerized processing of the experimental results.The proposed method meets all the above requirements. It implies the construction for a certain base position of the crystal the orientation matrix (0M) A, which gives a single intercorrelation between the coordinates of the unity vector in the reference coordinate system (RCS) and those of the same vector in the crystal reciprocal lattice base : .


Author(s):  
W. Chiu ◽  
M.F. Schmid ◽  
T.-W. Jeng

Cryo-electron microscopy has been developed to the point where one can image thin protein crystals to 3.5 Å resolution. In our study of the crotoxin complex crystal, we can confirm this structural resolution from optical diffractograms of the low dose images. To retrieve high resolution phases from images, we have to include as many unit cells as possible in order to detect the weak signals in the Fourier transforms of the image. Hayward and Stroud proposed to superimpose multiple image areas by combining phase probability distribution functions for each reflection. The reliability of their phase determination was evaluated in terms of a crystallographic “figure of merit”. Grant and co-workers used a different procedure to enhance the signals from multiple image areas by vector summation of the complex structure factors in reciprocal space.


2019 ◽  
Vol 15 (S354) ◽  
pp. 189-194
Author(s):  
J. B. Climent ◽  
J. C. Guirado ◽  
R. Azulay ◽  
J. M. Marcaide

AbstractWe report the results of three VLBI observations of the pre-main-sequence star AB Doradus A at 8.4 GHz. With almost three years between consecutive observations, we found a complex structure at the expected position of this star for all epochs. Maps at epochs 2007 and 2010 show a double core-halo morphology while the 2013 map reveals three emission peaks with separations between 5 and 18 stellar radii. Furthermore, all maps show a clear variation of the source structure within the observing time. We consider a number of hypothesis in order to explain such observations, mainly: magnetic reconnection in loops on the polar cap, a more general loop scenario and a close companion to AB Dor A.


2020 ◽  
Vol 477 (1) ◽  
pp. 173-189 ◽  
Author(s):  
Marco Pedretti ◽  
Carolina Conter ◽  
Paola Dominici ◽  
Alessandra Astegno

Arabidopsis centrin 2, also known as calmodulin-like protein 19 (CML19), is a member of the EF-hand superfamily of calcium (Ca2+)-binding proteins. In addition to the notion that CML19 interacts with the nucleotide excision repair protein RAD4, CML19 was suggested to be a component of the transcription export complex 2 (TREX-2) by interacting with SAC3B. However, the molecular determinants of this interaction have remained largely unknown. Herein, we identified a CML19-binding site within the C-terminus of SAC3B and characterized the binding properties of the corresponding 26-residue peptide (SAC3Bp), which exhibits the hydrophobic triad centrin-binding motif in a reversed orientation (I8W4W1). Using a combination of spectroscopic and calorimetric experiments, we shed light on the SAC3Bp–CML19 complex structure in solution. We demonstrated that the peptide interacts not only with Ca2+-saturated CML19, but also with apo-CML19 to form a protein–peptide complex with a 1 : 1 stoichiometry. Both interactions involve hydrophobic and electrostatic contributions and include the burial of Trp residues of SAC3Bp. However, the peptide likely assumes different conformations upon binding to apo-CML19 or Ca2+-CML19. Importantly, the peptide dramatically increases the affinity for Ca2+ of CML19, especially of the C-lobe, suggesting that in vivo the protein would be Ca2+-saturated and bound to SAC3B even at resting Ca2+-levels. Our results, providing direct evidence that Arabidopsis SAC3B is a CML19 target and proposing that CML19 can bind to SAC3B through its C-lobe independent of a Ca2+ stimulus, support a functional role for these proteins in TREX-2 complex and mRNA export.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Sign in / Sign up

Export Citation Format

Share Document