Wear-Resisting Property of 304 Stainless Steel Surface after Infiltration of Indium and Copper Alloys by Double Glow Technology

2014 ◽  
Vol 1030-1032 ◽  
pp. 263-267
Author(s):  
Yi Guang Wang ◽  
Jin Yong Xu ◽  
Bo Gao ◽  
Cheng Gao ◽  
Yin Wang

Copper and Indium alloys elements were metallized into 304 Stainless Steel surface by Double Glow Plasma Surface Alloying Technology (Double Glow Technology for short). Microstructure and Resistance property of diffusion layer analyzer was analysed by metallographic microscope, scanning electron microscopy, energy spectrum, friction and wear testing machine of high speed reciprocating. The results show that process parameters of the permeability copper and indium has an obvious effect for the organization structure and performance of diffusion layer. The friction coefficient of alloying layer has a significant decrease compared with the substrate. The wear-resisting performance has an effective change.

1984 ◽  
Vol 123 (1-3) ◽  
pp. 1470-1474 ◽  
Author(s):  
Shigeru Maeda ◽  
Mamoru Mohri ◽  
Toshiro Yamashina ◽  
Manfred Kaminsky

2012 ◽  
Vol 520 (15) ◽  
pp. 4990-4995 ◽  
Author(s):  
Fei Yu ◽  
Shougang Chen ◽  
Houmin Li ◽  
Lejiao Yang ◽  
Yansheng Yin

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 583 ◽  
Author(s):  
Pengxian Zhang ◽  
Yibin Pang ◽  
Mingwei Yu

WC-reinforced Ni60 composite coatings with different types of WC particles were prepared on 304 stainless steel surface by laser cladding. The influences of spherical WC, shaped WC, and flocculent WC on the microstructures and properties of composite coatings were investigated. The results showed that three types of WC particles distribute differently in the cladding coatings, with spherical WC particles stacking at the bottom, shaped WC aggregating at middle and lower parts, with flocculent WC particles dispersing homogeneously. The hardnesses, wear resistances, corrosion resistances, and thermal shock resistances of the coatings are significantly improved compared with the stainless steel substrate, regardless of the type of WC that is added, and especially with regard to the microhardness of the cladding coating; the addition of spherical or shaped WC particles can be up to 2000 HV0.05 in some areas. Flocculent WC, shaped WC, and spherical WC demonstrate large to small improvements in that order. From the results mentioned above, the addition of flocculent WC can produce a cladding coating with a uniform distribution of WC that is of higher quality compared with those from spherical WC and shaped WC.


2007 ◽  
Vol 70 (6) ◽  
pp. 1423-1428 ◽  
Author(s):  
ANDRÉS RODRÍGUEZ ◽  
WESLEY R. AUTIO ◽  
LYNNE A. McLANDSBOROUGH

The influence of inoculation level, material hydration, and stainless steel surface roughness on the transfer of Listeria monocytogenes from inoculated bologna to processing surfaces (stainless steel and polyethylene) was assessed. Slices of bologna (14 g) were inoculated with Listeria at different levels, from 105 to 109 CFU/cm2. Transfer experiments were done at a constant contact time (30 s) and pressure (45 kPa) with a universal testing machine. After transfer, cells that had been transferred to sterile stainless steel and polyethylene were removed and counted, and the efficiency of transfer (EOT) was calculated. As the inoculation level increased from 105 to 109 CFU/cm2, the absolute level of transfer increased in a similar fashion. By calculating EOTs, the data were normalized, and the initial inoculation level had no effect on the transfer (P > 0.05). The influence of hydration level on stainless steel, high-density polyethylene, and material type was investigated, and the EOTs ranged from 0.1 to 1 under all the conditions tested. Our results show that transfers to wetted processing surfaces (mean EOT = 0.43) were no different from dried processing surfaces (mean EOT = 0.35) (P > 0.05). Material type was shown to be a significant factor, with greater numbers of Listeria transferring from bologna to stainless steel (mean EOT = 0.49) than from bologna to polyethylene (mean EOT = 0.28) (P < 0.01). Stainless steel with three different surface roughness (Ra) values of <0.8 μm (target Ra = 0.25, 0.50, and 0.75 μm) and two different finishes (mechanically polished versus mechanically polished and further electropolished) was used to evaluate its effect on the transfer. The surface roughness and finish on the stainless steel did not have any effect on the transfer of Listeria (P > 0.05). Our results showed that when evaluating the transfer of Listeria, the use of EOTs rather than the absolute transfer values is essential to allow comparisons of transfer conditions or comparisons between research groups.


2012 ◽  
Vol 490-495 ◽  
pp. 3418-3422
Author(s):  
Yan Wang ◽  
Jin Yong Xu ◽  
Cheng Gao ◽  
Bo Gao

The effect on diffusion layer depth and copper content of the variation of various parameters in copper-infiltrated process on stainless steel surface by double glow plasma technology were researched. The process parameters contain Ar2 pressure, source voltage, heat insulation temperature and heat insulation time. The best process parameters are as follows: gas pressure:20Pa, source voltage:1000V, heat insulation temperature:950°C and heat insulation time:3h. Nowadays, the main methods of copper-infiltrated on stainless steel surface include: solid-infiltration method, paste-infiltration method, particle beam injection etc[1~4]. The strength of diffusion layer treated by the plasma metal infiltration technique is comparable to metallurgical bonding strength, and the process is low cost and less pollution.The paper systematically studied the plasma copper-infiltrated process on 304 Stainless Steel. The initial copper-infiltrated process parameters on 304 Stainless Steel were as follows[5]: Ar2 pressure: 20 Pa; source voltage: 1000 V; heat insulation temperature: 950°C; heat insulation time: 3 hours. The optimum seeking method is based on the initial process parameters, varying the value of one parameter each time. Four values of one parameter is a group contrasting experiments. Testing diffusion layer depth and copper content on surface of each experiment to be standerds of evaluation every value. The values of each parameter to be seleted were as follows: Ar2+ pressure: 10 Pa, 15 Pa, 20 Pa, 25 Pa; source voltage: 800V, 900V, 1000V, 1100V; heat insulation temperature: 800°C, 900°C, 950°C, 1000°C; heat insulation time: 2.5 h, 3 h, 3.5 h, 4 h.


2019 ◽  
Vol 357 ◽  
pp. 740-747 ◽  
Author(s):  
Jing Li ◽  
Lida Pan ◽  
Qiang Fu ◽  
Yingluo Zhou ◽  
Nan Guo

Sign in / Sign up

Export Citation Format

Share Document