Preparation and Characterization of Silicate Wood Adhesive Modified with Ammonium Stearate

2014 ◽  
Vol 1033-1034 ◽  
pp. 1048-1053 ◽  
Author(s):  
Xin Li Zhang ◽  
Hong Hui Zhang ◽  
Yi Qiang Wu ◽  
Yun Chu Hu

In order to improve the water resistance of silicate wood adhesive, a kind of silicate adhesive was prepared from water glass with silica as curing agent, and ammonium stearate as modifier. The chemical structure, surface morphology and thermal properties of the silicate adhesive were characterized by Fourier transform infrared spectrometer, scanning electron microscope, and thermo-gravimetric analyzer. As the two main measures of adhesion properties, the bonding strength and water resistance were also determined. The results showed that ammonium stearate was successfully introduced into the molecule structure of silicate, the silicate adhesive have good thermal stability in the range of 30~800 °C and the modified silicate adhesive had more smooth cured morphology. The bonding strength and 24h water absorption rate of poplar plywood glued by the silicate adhesive was 0.71 MPa and 22.81%, respectively, reaching the grade II of plywood performance's national standard.

2012 ◽  
Vol 557-559 ◽  
pp. 1825-1829 ◽  
Author(s):  
Xin Li Zhang ◽  
Yi Qiang Wu ◽  
Yun Chu Hu

A kind of nanoparticles modified Na2SiO3 adhesive was prepared from Na2SiO3 aqueous solution with nano-silica and nano-magnesia as curing agent, and nano attapulgite as skeleton material. The chemical structure, surface morphology and thermal properties of nanoparticles modified Na2SiO3 adhesive were characterized by Fourier transform infrared spectrometer, scanning electron microscope, and thermo-gravimetric analyzer. As the two main measures of adhesion properties, the bonding strength and water resistance were also determined. The results showed that nanoparticles uniformly dispersed in Na2SiO3 matrix in the state of grain, so the homogenous morphology of cured adhesive was formed and bonding strength of Na2SiO3 adhesive was improved. Nanoparticles modified Na2SiO3 adhesive have good thermal stability in the range of 30~800 °C. The bonding strength and 24h water absorption rate of poplar plywood glued by the nanoparticles modified Na2SiO3 adhesive is 0.8 MPa and 23.7%, respectively, reaching the type-two plywood performance standards.


2011 ◽  
Vol 86 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Zhenjiong Wang ◽  
Zhengbiao Gu ◽  
Yan Hong ◽  
Li Cheng ◽  
Zhaofeng Li

2014 ◽  
Vol 884-885 ◽  
pp. 108-111 ◽  
Author(s):  
Chun Nan Jin ◽  
Shi Cheng Zhang ◽  
Jiu Yin Pang ◽  
Zhen Guo Gao

This paper is mainly aimed at the problem of low bonding strength of soy bean protein adhesive,poor water resistance,with methyl methacrylate and vinyl acetate composite study made with rubber manufacturing class II plywood,meet the national standard,so as to solve the water resistance of soy protein adhesives and bonding strength of.Experiments that 3.5g soy protein, 5g PVA, 30g MMA, 0.3g APS and 100g water, modified soy protein adhesive bonding strength obtained is excellent, and cost reduction.Preparation of soybean protein-acrylate adhesive solid content,viscosity and strength of plywood detection.


2015 ◽  
Vol 115 ◽  
pp. 32-37 ◽  
Author(s):  
Yanhua Zhang ◽  
Longlong Ding ◽  
Jiyou Gu ◽  
Haiyan Tan ◽  
Libin Zhu

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3121-3136
Author(s):  
Xiaobo Wei ◽  
Yuxiang Ma ◽  
Xuede Wang

Sesame cake and meal, byproducts of the sesame oil process industry and mainly used as feed and fertilizer, are often not optimally utilized and are wasted when the material could be used as a high-quality protein source. This research primarily emphasizes the preparation of a sesame protein-based adhesive with urea and glyoxal modification to use as a wood adhesive. The performance and characterization of the urea and glyoxal modified sesame protein adhesive (USP and GUSP, respectively) were measured precisely. After glyoxal was added, the water resistance of the GUSP adhesive was significantly enhanced, reaching the standard for Type II plywood. The formaldehyde emission test showed that the GUSP adhesive could be utilized as a formaldehyde-free wood adhesive, having a significantly lower than the demand of the E0 level (i.e., 0.5 mg/L). Furthermore, increasing the glyoxal content in the adhesives enhanced the thermal stability but not significantly. A substance with a crosslinking structure was formed from the reaction between the sesame protein and glyoxal, which enhanced the water resistance. Meanwhile, the fractured structure of the GUSP adhesive having a compact surface also was propitious to enhance the water resistance. Thus, the GUSP adhesive could be used as a novel adhesive in plywood fabrication.


2018 ◽  
Vol 5 (4) ◽  
pp. 172002 ◽  
Author(s):  
Xiaodi Ji ◽  
Yue Dong ◽  
Tat Thang Nguyen ◽  
Xueqi Chen ◽  
Minghui Guo

With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.


2018 ◽  
Vol 68 (12) ◽  
pp. 2799-2803
Author(s):  
Maria Daniela Pop ◽  
Oana Brincoveanu ◽  
Mihaela Cristea ◽  
George Octavian Buica ◽  
Marius Enachescu ◽  
...  

Preparation and microscopy characterization of polymer modified glassy carbon electrodes based on (5-[(azulen-1-yl) methylene]-2-thioxothiazolidin-4-one (L) were reported. Atomic Force Microscopy was used to investigate the morphological and mechanical properties of the deposited polyL films onto glassy carbon. The topography images of the analyzed samples exhibited the presence of some columnar shape features onto the layer surfaces. The surface roughness of the layers deposited at constant charge calculated from topography images, increased with the more positive applied potential for controlled potential electrolysis. At different charges, the roughness parameter showed the same behavior for the layers obtained applying a constant potential without having a noticeable influence on the adhesion properties on the substrate. Analysis using scanning electron microscopy shows a relatively uniform surface arrangement of the polymer and the presence of some clusters which are disturbing the planarity. PolyL chemically modified electrodes have been used for heavy metal ions detection with best results for lead.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


Sign in / Sign up

Export Citation Format

Share Document