The Research of the Absorption and Angle Characteristics of Honeycomb Hexagon Phase Modulation Membrane

2014 ◽  
Vol 1035 ◽  
pp. 254-258
Author(s):  
Ying Ying Yi ◽  
Wan Jun Hao ◽  
Hui Chao Zhao ◽  
Yi Feng Dong ◽  
Xin Dan Yu

According to the honeycomb hexagonal phase modulation membrane, this paper designed and prepared λ/4 electromagnetic wave absorber. Studies have shown that the honeycomb hexagonal phase modulation membrane structure can realize the absorber width. Experiments have shown that 65% of bandwidth below-10 dB was achieved under following conditions: line length a = 4 cm, line weight b = 6 mm. For line length a = 4 cm, line weight b = 6 mm, the angle characteristics of phase modulation membrane was studied. The study of angle characteristics have shown that, absorption peak moved backward with the angles increasing. This new composite materials can be used for electromagnetic interference protection for WLAN and indoor electromagnetic radiation pollution control.

2014 ◽  
Vol 881-883 ◽  
pp. 1216-1220
Author(s):  
Ying Ying Yi ◽  
Wan Jun Hao ◽  
Hui Chao Zhao ◽  
Yi Feng Dong ◽  
Fan Wu ◽  
...  

According to the principle of electromagnetic wave absorption, functionally reforming thermal insulating materials for building, through designing and theoretically simulating of the λ/4 model, the article has successfully prepared EPS composite gypsum boards for electromagnetic wave absorption. The result shows that, a maximum absorption of-18.7dB at 3GHz and 85% of bandwidth below-10dB was achieved under following conditions: using 380Ω/□ resistive film, specimen thickness of 1.50cm. However, by using phase modulation membrane (PMM),it achieved a maximum absorption of-20dB and 100% of bandwidth below-10dB. This new composite materials can be used for electromagnetic interference protection for WLAN and indoor electromagnetic radiation pollution control.


2020 ◽  
Vol 9 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Shumin Du ◽  
Huaiyin Chen ◽  
Ruoyu Hong

AbstractWith the rapid development of electronics and information technology, electronics and electrical equipment have been widely used in our daily lives. The living environment is full of electromagnetic waves of various frequencies and energy. Electromagnetic wave radiation has evolved into a new type of environmental pollution that has been listed by the WHO (World Health Organization) as the fourth largest source of environmental pollution after water, atmosphere, and noise. Studies have shown that when electromagnetic wave radiation is too much, it can cause neurological disorders. And electromagnetic interference will cause the abnormal operation of medical equipment, precision instruments and other equipment, and therefore cause incalculable consequences. Therefore, electromagnetic protection has become a hot issue of concern to the social and scientific circles.


Carbon ◽  
2021 ◽  
Vol 177 ◽  
pp. 304-331
Author(s):  
Rajesh Kumar ◽  
Sumanta Sahoo ◽  
Ednan Joanni ◽  
Rajesh K. Singh ◽  
Wai Kian Tan ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinyu Wu ◽  
Tingxiang Tu ◽  
Yang Dai ◽  
Pingping Tang ◽  
Yu Zhang ◽  
...  

Highlights 3D printing of MXene frames with tunable electromagnetic interference shielding efficiency is demonstrated. Highly conductive MXene frames are reinforced by cross-linking with aluminum ions. Electromagnetic wave is visualized by electromagnetic-thermochromic MXene patterns. Abstract The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference (EMI) shielding materials to assure the normal operation of their closely assembled components. However, the most current techniques are not adequate for the fabrication of shielding materials with programmable structure and controllable shielding efficiency. Herein, we demonstrate the direct ink writing of robust and highly conductive Ti3C2Tx MXene frames with customizable structures by using MXene/AlOOH inks for tunable EMI shielding and electromagnetic wave-induced thermochromism applications. The as-printed frames are reinforced by immersing in AlCl3/HCl solution to remove the electrically insulating AlOOH nanoparticles, as well as cross-link the MXene sheets and fuse the filament interfaces with aluminum ions. After freeze-drying, the resultant robust and porous MXene frames exhibit tunable EMI shielding efficiencies in the range of 25–80 dB with the highest electrical conductivity of 5323 S m−1. Furthermore, an electromagnetic wave-induced thermochromic MXene pattern is assembled by coating and curing with thermochromic polydimethylsiloxane on a printed MXene pattern, and its color can be changed from blue to red under the high-intensity electromagnetic irradiation. This work demonstrates a direct ink printing of customizable EMI frames and patterns for tuning EMI shielding efficiency and visualizing electromagnetic waves.


1976 ◽  
Vol 31 (12) ◽  
pp. 1517-1519 ◽  
Author(s):  
P. K. Shukla ◽  
M. Y. Yu ◽  
S. G. Tagare

Abstract We show analytically that the nonlinear coupling of a large amplitude electromagnetic wave with finite amplitude ion fluctuations leads to filamentation. The latter consists of striations of the electromagnetic radiation trapped in depressions of the plasma density. The filamentation is found to be either standing or moving normal to the direction of the incoming radiation. Criteria for the existence of localized filaments are obtained. Small amplitude results are discussed.


Author(s):  
О. П. Кизимчук ◽  
С. І. Арабулі ◽  
В. І. Власенко

Analysis  of  existing  textile  materials  used  for  electromagnetic  radiation  shielding,  their systematization, and basic production methods are the main goals of this review. Methodology. The review of scientific literature and the systematization of the results in the field "textile materials for electromagnetic interference" are the main methods used for this research.


2017 ◽  
Vol 88 (20) ◽  
pp. 2353-2361 ◽  
Author(s):  
Wei Fan ◽  
Dan-dan Li ◽  
Jia-lu Li ◽  
Juan-zi Li ◽  
Lin-jia Yuan ◽  
...  

To investigate the reinforcement architectures effect on the electromagnetic wave properties of carbon fiber reinforced polymer composites, three-dimensional (3D) interlock woven fabric/epoxy composites, 3D interlock woven fabric with stuffer warp/epoxy composites, and 3D orthogonal woven fabric/epoxy composites were studied by the free-space measurement system. The results showed that the three types of 3D woven carbon fiber fabric/epoxy composites had a slight difference in electromagnetic wave properties and the absorption was their dominant radar absorption mechanism. The electromagnetic wave absorption properties of the three types of composites were more than 90% (below −10 dB) over the 11.2–18 GHz bandwidth, and more than 60% (below −4 dB) over the 8–12 GHz bandwidth. Compared with unidirectional carbon fiber reinforced plastics, the three kinds of 3D woven carbon fiber fabric/epoxy composites exhibited better electromagnetic wave absorption properties over a broadband frequency range of 8–18 GHz. Therefore, the three kinds of 3D woven composite are expected to be used as radar absorption structures due to their excellent mechanical properties and outstanding absorption capacity. The total electromagnetic interference shielding effectiveness of the three types of 3D carbon fiber woven composites are all larger than 46 dB over the 8–12 GHz bandwidth, which is evidence that the three types of 3D carbon fiber woven composites can be used as excellent shielding materials for electromagnetic interference.


Author(s):  
Mehran Tehrani ◽  
Ayoub Y. Boroujeni ◽  
Majid Manteghi ◽  
Zhixian Zhou ◽  
Marwan Al-Haik

Electromagnetic (EM) waves, such as electronic noise and radio frequency interference can be regarded as an invisible electronic pollution which justifies a very active quest for effective electromagnetic interference (EMI) shielding materials. Highly conductive materials of adequate thickness are the primary solutions to shield against EMI. Equipment cases and basic structure of space aircraft and launch vehicles have traditionally been made of aluminum, steel and other electrically conductive metals. However, in recent years composite materials have been used for electronic equipment manufacturing because of their lightweight, high strength, and ease of fabrication. Despite these benefits, composite materials are not as electrically conductive as traditional metals, especially in terms of electrical grounding purposes and shielding. Therefore, extra effort must be taken to resolve these shortcomings. The present work demonstrates a study on developing hybrid composites based on fiberglass with surface grown carbon nanotubes (CNTs) for EMI applications. The choice of fiberglass is primarily because it naturally possesses poor electrical conductivity, hence growing CNTs over glass fiber surface can significantly improve the conductivity. The fabrics were sputter-coated with a thin layer of SiO2 thermal barrier prior to growing of CNTs. The CNTs were grown on the surface of woven fiberglass fabrics utilizing a relatively low temperature technique. Raw fiberglass fabric, SiO2 coated fabric, and SiO2 coated fabric which was subjected to the identical heat treatment as the samples with CNTs were also prepared. Two-layers composite specimens based on different surface treated fiberglass fabrics were fabricated and their EMI shielding effectiveness (SE) was measured. The EMI SE of the hybrid CNT-fiberglass composites was shown to be 5–10 times of the reference samples. However, the tensile mechanical properties of the composites based on the different above mentioned fibers revealed significant degradation due to the elevated CNT growth temperature and the addition of coating layer and CNTs. To further probe the structure of the hybrid composites and the inter-connectivity of the CNTs from one interface to another, sets of 20-layers composites based on different surface treated fabrics were also fabricated and characterized.


2013 ◽  
Vol 646 ◽  
pp. 245-248
Author(s):  
Anton Anzulevich ◽  
Leonid But’ko ◽  
Sergey Moiseev ◽  
Il’ya Zotov

Dependences of distribution, penetration, reflection and absorption of microwaves in the layers of conductive micro-particles on the frequency of the incident radiation and size of particles are obtained and investigated. Layers of conductive spherical particles as the shell, and without it are accepted in our work as the most common model of powder metals. So, this study allows to describe and classify features of electromagnetic wave heating of various metal powders and to predict the performance, in which it will be effective heating of metal powders by electromagnetic radiation.


Sign in / Sign up

Export Citation Format

Share Document