scholarly journals ТЕКСТИЛЬ ДЛЯ ЗАХИСТУ ВІД ЕЛЕКТРОМАГНІТНОГО ВИПРОМІНЮВАННЯ

Author(s):  
О. П. Кизимчук ◽  
С. І. Арабулі ◽  
В. І. Власенко

Analysis  of  existing  textile  materials  used  for  electromagnetic  radiation  shielding,  their systematization, and basic production methods are the main goals of this review. Methodology. The review of scientific literature and the systematization of the results in the field "textile materials for electromagnetic interference" are the main methods used for this research.

2020 ◽  
pp. 145-155
Author(s):  
С. І. Арабулі ◽  
О. П. Кизимчук ◽  
А. Т. Арабулі ◽  
В. І. Власенко ◽  
В. Байзік ◽  
...  

The purpose. An investigation of the shielding effectiveness against electromagnetic radiation (EMR) by woven fabrics that are presented on the Ukrainian interior textile market. Methodology. Theoretical and experimental research is based on the general principles of textile materials science. The shielding effectiveness to EMR of textile fabrics was tested and measured using EM-2107A (Electro Metrics) in accordance with ASTM 4935-10 in the frequency range 30 MHz – 1.5 GHz. Results. Flexible screens based on textile materials are widely used for EMR shielding. The shielding effectiveness against EMR by textile materials can be improved with fabric modifying by metal fibers/threads, metal particles or conductive polymers at various stages of textile production. It possible to substantiate the expediency of using metal-containing textile materials as interior textiles on the result of carried out analysis of the modern assortment of interior textiles and the experimental studies. Studies results have shown that the proposed fabrics have a high shielding ability by the classification "professional use" according to FTTS-FA-003 Specified Requirements of Electromagnetic Shielding Textiles, the shielding efficiency of which is within 30 ÷ 60 dB. Scientific novelty. The expediency of using modern metal-containing textile materials as interior textiles for windows decoration has been substantiated. The studied textile materials make it possible to clarify a new promising segment of the interior textile market - windows decoration. The main goal of such textile - the decoration of the residential and administrative buildings is expanded and supplemented by the function of electromagnetic radiation shielding. Practical significance. The complex of scientific research on the shielding effectiveness against EMR allowed offering a new range of interior textile materials for window decoration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seon-Chil Kim ◽  
Jun Sik Son

AbstractNatural and medical radiation are the most frequent sources of daily low-dose radiation exposure for the general public, but these radiation levels are generally acceptable. Among various occupations, aviation crew members and medical workers are exposed to high levels of radiation from scattered rays. This study focused on developing clothing for shielding aviation crew members from natural radiation during air travel. Materials were selected considering their radiation-shielding properties. A tungsten double-layered composite yarn and a polyethylene terephthalate (PET) fiber fabric containing BaSO4 were manufactured. The characteristics and shielding performances of the products were analyzed. Prototypes of a protective scarf (for shielding the thyroid gland) and apron (for shielding the torso) for flight attendants were produced. A lightweight fabric was produced that neither restricts the movement of the wearer nor causes them skin discomfort. The shielding performances of the tungsten composite and PET fiber fabrics containing BaSO4 were 0.018 mmPb and 0.03 mmPb, respectively, demonstrating low-dose shielding that may be useful for protecting aviation crew members from scattered rays. The characteristics of the developed fibers are comparable to those of materials used in clothing production; therefore, low-dose radiation-shielding clothing could be manufactured for use in aviation, medical, and other industries.


2021 ◽  
pp. 152808372110370
Author(s):  
Faiza Safdar ◽  
Munir Ashraf ◽  
Amjed Javid ◽  
Kashif Iqbal

The rapid proliferation of electronic devices and their operation at high frequencies has raised the contamination of artificial electromagnetic radiations in the atmosphere to an unprecedented level that is responsible for catastrophe for ecology and electronic devices. Therefore, the lightweight and flexible electromagnetic interference (EMI) shielding materials are of vital importance for controlling the pollution generated by such high-frequency EM radiations for protecting ecology and human health as well as the other nearby devices. In this regard, polymeric textile-based shielding composites have been proved to be the best due to their unique properties such as lightweight, excellent flexibility, low density, ease of processability and ease of handling. Moreover, such composites cover range of applications from everyday use to high-tech applications. Various polymeric textiles such as fibers, yarn, woven, nonwoven, knitted, as well as their hybrid composites have been extensively manipulated physically and/or chemically to act as shielding against such harmful radiations. This review encompasses from basic concept of EMI shielding for beginner to the latest research in polymeric-based textile materials synthesis for experts, covering detailed mechanisms with schematic illustration. The review also covers the gap of materials synthesis and their application on polymeric textiles which could be used for EMI shielding applications. Furthermore, recent research regarding rendering EMI shielding properties at various stages of polymeric textile development is provided for readers with critical analysis. Lastly, the applications along with environmental compliance have also been presented for better understanding.


2017 ◽  
Vol 907 ◽  
pp. 104-118
Author(s):  
Maria Stoicănescu ◽  
Eliza Buzamet ◽  
Dragos Vladimir Budei ◽  
Valentin Craciun ◽  
Roxana Budei ◽  
...  

Dental implants are becoming increasingly used in current dental practice. This increased demand has motivated manufacturers to develop varieties of product through design, but also looking for new materials used to improve surface characteristics in order to obtain a better osseointegration. But the increase in the use of implants goes to a consequent increase in the number of failures. These failures are caused either by treatment complications (peri-implantitis), by fatigue breakage under mechanical over-stress, by defective raw material, or due to errors during the insertion procedures. Although they are rare, these complications are serious in dentistry. Before to market a dental implant to clinical practitioners, the product is validated among other determinations in number of biocompatibility research. Raw material issues, details about its structure and properties are less published by the scientific literature, but all this are subject of a carefully analysis of the producers. Breaking of dental implants during surgical procedures, during the prosthetic procedures or during use (chewing, bruxism, accidents, etc.), is the second most common cause of loss of an implant after consecutive peri-implantitis rejection. Although the frequency of this type of failure for a dental implant is much smaller than those caused by the peri-implantitis, a detailed study of broken implants can explain possible causes. The use of scanning electron microscopy (SEM) in the study of the cleave areas explain the production mechanism of cleavages, starting from micro-fissures in the alloy used for the production of dental implants. These micro-fissures in weak areas of the implant (anti-rotational corners of the polygons, etc.) could generate a serious risk of cleavage first time when a higher force is applied.


2021 ◽  
Vol 1038 ◽  
pp. 460-467
Author(s):  
Olga Skorodumova ◽  
Olena Tarakhno ◽  
Olena Chebotaryova ◽  
Dmitriy Saveliev ◽  
Fatih Mehmet Emen

The use of complex fire-retardant coatings based on ethyl silicate gel - diammonium hydrogen phosphate reduces the process of smoke formation during thermal exposure to treated tissue samples, which is promising for improving the fire safety of textile materials. The compositions are easy to obtain, they do not require specific processing conditions, do not contain toxic substances. This allows us to offer developed compositions for fire protection of textile materials used in facilities with a large number of people.


2016 ◽  
Vol 47 (8) ◽  
pp. 2228-2252 ◽  
Author(s):  
Subhankar Maity ◽  
Arobindo Chatterjee

This article reviews the preparation, development and characteristics of conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding. Modification of ordinary textile materials in the form of electro-conductive composites makes them suitable for this purpose. Various metallic and non-metallic electro-conductive textiles have been explored here as the material for electromagnetic shielding. Different approaches of preparing textile electromagnetic shield have been described here. Recent advancements of application of conductive polymers in the field of textile electromagnetic shielding are described. Conductive polymer-coated textile materials showed superior electrical property as electromagnetic shield. Different methods of applications of conductive polymers onto textile surface are described here with their relative merits and demerits. Different conductive polymer-coated woven and nonwoven fabrics prepared by various researchers for electromagnetic shielding are taken into account. The effects of different process parameters of polymer processing on electromagnetic shielding are described.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
A.I.H. Fayed ◽  
Y.A. Abo El Amaim ◽  
Ossama Ramy ◽  
Doaa H. Elgohary

Purpose This paper aims to investigate the performance of four different textile materials used as an outer shell of the bulletproof vest. Design/methodology/approach In this paper, four different textile materials were used, polyurethane treatment was applied as a surface coating for the woven samples. Mechanical properties were conducted for all samples; scanning electron microscope and X-ray energy disperse spectroscopy were executed to show the surface morphology of samples and the chemical composition of the coating material. Findings One-way ANOVA was used to statistically analyse the results, which proved that all variables were highly significantly affected by using different textile materials, despite the stiffness variable being not significantly affected by textile materials. An overall evaluation was done using radar chart, demonstrated that Cordura material accomplished the best functional performance, using two types of calibres 7.62 × 54 mild steel core and 7.62 × 54 armour piercing incendiary; the common mechanism was localized burn because of the incendiary effect of the projectile in addition to tearing mechanism starting from inside because of penetration effect of the steel core. Originality/value This work was addressed to analyse the impact of using four different materials on its performance as the outer shell of bulletproof vest to achieve the desired degree of protection.


2018 ◽  
Vol 5 (8) ◽  
pp. 15909-15914
Author(s):  
Viacheslav Barsukov ◽  
Ilona Senyk ◽  
Olena Kryukova ◽  
Oksana Butenko

Ceramics ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 258-264
Author(s):  
Hiroyuki Mori ◽  
Yohei Oku ◽  
Yudo Mannami ◽  
Takahiro Kunisada

We developed a new ceramic from raw material mainly composed of iron (III) oxide. The measured attenuation coefficient of the ceramic for high-energy gamma rays was in the range 0.268–0.355, which is approximately 40% of that of lead and twice that of concrete. The measured penetrating dose of the ceramic is half of that of concrete. Thus, the novel ceramic material named RASHIX may serve as a novel ceramic alternative for the wide variety of radiation shielding materials used in construction.


Sign in / Sign up

Export Citation Format

Share Document