Coaxial Poly (Phenylene Vinylene)/Carbon Nanotube Nanocomposites

2014 ◽  
Vol 1035 ◽  
pp. 325-329
Author(s):  
Yi Zhou ◽  
Xiao Ping Wang ◽  
Wen Yi Li ◽  
Hui Li ◽  
Ming Tian ◽  
...  

Coaxial nanocomposites were prepared by in–situ chemical polymerization of 4– dibromomethyl–2,5–2–octyloxy phenylene in the presence of multiwall carbon nanotubes. The morphology, microstructure and thermal and electrochemical properties of the resulting nanocomposites were investigated by scanning electron microscopy, Fournier infrared spectroscopy, thermal gravimetric analysis and cyclic voltammetry. The results indicated that the nanocomposites with uniform core-shell structure exhibited higher thermal stability than neat poly (phenylene vinylene). Furthermore, energy storage ability of these coaxial nanocomposites as electrode materials for supercapacitor was evaluated.

RSC Advances ◽  
2016 ◽  
Vol 6 (63) ◽  
pp. 58493-58500 ◽  
Author(s):  
Shuang-lin Li ◽  
Rui Dou ◽  
Yan Shao ◽  
Bo Yin ◽  
Ming-bo Yang

This work demonstrated the selective localization of multiwall carbon nanotubes (MWCNTs) in poly(vinylidene fluoride) (PVDF)/poly(styrene) (PS)/high-density poly(ethylene) (HDPE) blends to be an effective method to reduce the dielectric loss.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 29-33
Author(s):  
LEE A. GOETZ ◽  
AJI P. MATHEW ◽  
KRISTIINA OKSMAN ◽  
ARTHUR J. RAGAUSKAS

The thermal stability and decomposition of in-situ crosslinked nanocellulose whiskers – poly(methyl vinyl ether-co-maleic acid) – polyethylene glycol formulations (PMVEMA-PEG), (25%, 50%, and 75% whiskers) – were investigated using thermal gravimetric analysis (TGA) methods. The thermal degradation behavior of the films varied according to the percent cellulose whiskers in each formulation. The presence of cellulose whiskers increased the thermal stability of the PMVEMA-PEG matrix.


2015 ◽  
Vol 17 (2) ◽  
pp. 776-780 ◽  
Author(s):  
Barun Kumar Barman ◽  
Karuna Kar Nanda

We demonstrate a Si-mediated environmentally friendly reduction of graphene oxide (GO) and the fabrication of hybrid electrode materials with multiwall carbon nanotubes and nanofibers. The reduction of GO is facilitated by the nascent hydrogen generated by the reaction between Si and KOH. The overall process consumes 10 to 15 μm of Si each time and the same Si substrate can be used multiple times.


2011 ◽  
Vol 23 (7) ◽  
pp. 513-517 ◽  
Author(s):  
Mohsen Ghorbani ◽  
Mohammad Soleimani Lashkenari ◽  
Hossein Eisazadeh

This study investigated the preparation and properties of polyaniline/silver (PAn/Ag2O) nanocomposite in aqueous media by chemical polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidant. The products were investigated in terms of morphology, chemical structure, thermal stability and thermal degradation using scanning electron microscopy, Fourier transform infrared, thermal gravimetric analysis and differential scanning calorimetry, respectively. The results indicated that the properties of products were dependent on the nanocomposite structure.


2013 ◽  
Vol 634-638 ◽  
pp. 2293-2296
Author(s):  
Ai Li Ma ◽  
Cheng Qian Li ◽  
Wu Qing Du ◽  
Jie Chang

In this paper, carbon spheres were synthesized by CVD method. These carbon spheres exhibit diameters of about 200 nm. Thermal gravimetric analysis indicated the good stability in high temperature of the carbon spheres. The products were treated by microwave plasma and high temperature vacuum heat treatments respectively. The products were characterized by X-ray diffraction, Raman spectroscopy and Field Emission Scanning Electron Microscope. The study indicated that the original products, with perfect morphology and low graphitization degree, were converted to crystal. The different techniques were considered for the influence on the graphitization degree.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Prashant A Patil ◽  
Santosh D Wanjale ◽  
Jyoti P. Jog

AbstractNanocomposites of poly(4-methyl-1-pentene) (PMP) with various weight fractions of multiwall carbon nanotubes (MWNT’s) were prepared by melt compounding. The nanocomposites are characterized for structure using scanning electron microscopy. The viscoelastic behavior of the nanocomposites is investigated in solid as well as melt state. The study reveals a significant increase in storage modulus especially in the rubbery regime of the polymer matrix and reduced tan δ. Rheological properties in melt show that the complex viscosity and shear storage modulus are increased as a result of incorporation of MWNT. A systematic decrease in the cross over frequency is noted which is attributed to the increased relaxation time. In dielectric analysis, composition dependent enhanced permittivity and conductivity are observed. The thermal stability of the polymer is found to be significantly improved in presence of MWNT’s.


Sign in / Sign up

Export Citation Format

Share Document