Thermal Characteristic Analysis of Rectangular and Large-Capacity Lithium-Ion Power Batteries

2014 ◽  
Vol 1044-1045 ◽  
pp. 448-456
Author(s):  
Chun Jing Lin ◽  
Si Chuan Xu ◽  
Guo Feng Chang ◽  
Zhao Li

Operating temperature and thermal uniformity have great effect on the performance, cycle life and safety of lithium-ion power batteries. In order to investigate the surface temperature change and distribution of a large-capacity and rectangular LiFePO4/C power battery, this paper conducts experiments on charging and discharging a battery module and cell at different current rates and various ambient temperatures. Results of thermalcouple-measurement show that temperature rising rates at different temperatures during charge and discharge change in accordance with the variation tendency of the resistance at different state of charge (SOC) and oprating temperatures. Under elevated ambient temperatures, the temperature excurtion and maximum temperature difference of the module are all smaller. Under the same ambient temperature, battery temperature at the end moment of discharge increases and the temperature uniformity of the module deteriorate at higher discharging rate. Temperature excurtion over the same time period is in a relationship of a standard quadratic function with the discharge current. Results of the thermal infrared imaging tests show that the maximum surface temperature differences at different discharging currents of 20A, 40A, and 80A are all above 5°C under natral convection heat transfer. The temperature of the lower part is higher than that of the upper part, while that of the central area is the highest. In a comprehensive charging and discharging scheme, the tendency of maximum surface temperature difference changes in accordance with that of the average surface temperature.

1969 ◽  
Vol 32 (1) ◽  
pp. 20-25 ◽  
Author(s):  
A. M. Scalzo ◽  
R. W. Dickerson ◽  
R. B. Read

Paper thermometers that change, irreversibly, from white to black at a critical temperature were evaluated for measuring maximum surface temperature of dishes during commercial dishwashing in a single-tank, conveyor-type unit. A thermocouple, taped to a dish, was used to determine the maximum temperature attained at the surface of the dishes and this result was compared with a measurement obtained from a paper thermometer affixed to the dish. Temperature measurements by the two methods were within the 10 F span of the paper thermometer. Paper thermometers were found satisfactory for measuring the maximum temperature of the dish surface during dishwashing and also appear useful for routine checking of dishwasher performance.


Author(s):  
Cheng Li ◽  
Hewu Wang ◽  
Xuebing Han ◽  
Yan Wang ◽  
Yu Wang ◽  
...  

Abstract Lithium-ion cells normally operate during 0% and 100% state of charge (SOC), therefore thermal runaway can occur at any SOC. In this paper, the 74 Ah lithium-ion pouch cells with the Li(Ni0.8Co0.1Mn0.1)O2 cathode were thermally abused by lateral heating in a semi-open chamber. The differences of thermal runaway behavior were investigated under six SOCs. Characteristic parameters such as triggering time and triggering temperature for thermal runaway show a negative correlation with SOCs, while maximum surface temperature and maximum surface temperature rise rate show a strongly positive correlation. Besides, mass loss ratio increases exponentially with equivalent specific capacity statistically, which implies that the pouch cells with high specific energy density and high capacity may eject more violently. Furthermore, the impact on the surroundings caused by high-temperature ejections was studied, and maximum ambient temperature and maximum ambient pressure in the chamber reached a plateau at middle SOCs. Based on the thermal impact on the surroundings, a theoretical method is proposed to evaluate the deterioration of heat dissipation by venting, and simplified to quantitatively calculate the deterioration under above SOCs. The results can provide guidance for battery safety management strategies and structure design of the battery pack.


2017 ◽  
Vol 16 (6) ◽  
pp. 1309-1316 ◽  
Author(s):  
Lucian Moldovan ◽  
Sorin Burian ◽  
Mihai Magyari ◽  
Marius Darie ◽  
Dragos Fotau

1958 ◽  
Vol 39 (4) ◽  
pp. 202-204
Author(s):  
Philip Williams

An objective method is developed for forecasting the current day's maximum temperature at Salt Lake City during the warm season, May–October. Good results are obtained by using either the height of the freezing level or the 700-mb temperature at 0800 MST at Salt Lake City combined with the 0830 MST surface temperature and the 0530–0830 MST surface temperature change. Results are compared with subjective forecasts.


1992 ◽  
Vol 114 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Shao Wang ◽  
T. F. Conry ◽  
C. Cusano

A computationally simple formulation for the stationary surface temperature is developed to examine the thermal non-Newtonian EHD problem for line contacts under simple sliding conditions. Numerical results obtained are used to develop a formula for a thermal and non-Newtonian (Ree-Eyring) film thickness reduction factor. Results for the maximum surface temperature and traction coefficient are also presented. The thermal effects on film thickness and traction are found to be more pronounced for simple sliding than for combined sliding and rolling conditions.


2020 ◽  
Vol 305 ◽  
pp. 00026
Author(s):  
Adrian Marius Jurca ◽  
Niculina Vătavu ◽  
Leonard Lupu ◽  
Mihai Popa

Non-electrical equipment has been used for over 150 years in industries with potentially explosive atmospheres and great experience has been gained with regard to the application of protective measures to reduce the risk of ignition down to an acceptable safety level. The use of non-electrical equipment in explosive atmospheres required the development of specific requirements with regard to the concept of protection against the ignition of explosive atmospheres, which to clearly define protection measures and to include the experience gained and extended over the years. The practical studies, laboratory research and methods for assessing and testing the hazard of ignition by hot surfaces presented within the paper have as main purpose the improvement of ignition hazard assessment in different operating conditions.


1993 ◽  
Vol 115 (1) ◽  
pp. 1-9 ◽  
Author(s):  
X. Tian ◽  
F. E. Kennedy

In this paper, a three-dimensional model of a semi-infinite layered body is used to predict steady-state maximum surface temperature rise at the sliding contact interface for the entire range of Peclet number. A set of semi-empirical solutions for maximum surface temperature problems of sliding layered bodies is obtained by using integral transform, finite element, heuristic and multivariable regression techniques. Two dimensionless parameters, A and Dp, which relate to coating thickness, contact size, sliding speed and thermal properties of both coating and substrate materials, are found to be the critical factors determining the effect of surface film on the surface temperature rise at a sliding contact interface. A semi-empirical solution for maximum surface temperature problems of homogeneous bodies, which covers the whole range of Peclet number, is also obtained.


Sign in / Sign up

Export Citation Format

Share Document