A Distributed Index Tree and its Concurrency Control Algorithm

2014 ◽  
Vol 1044-1045 ◽  
pp. 982-985
Author(s):  
Wei Jie Gu ◽  
Yun Liang Wang

This paper presents a new distributed index tree named RDB+-Tree and a concurrency control algorithm named VTC-RDB+. In RDB+-Tree, the leaf node is organized for a hash list. The principle of VTC-RDB+ algorithm can be established by utilizing multiple elements which are in favor of concurrency control and by combining with version and time control method. Theoretical analysis and experimental results show that the RDB+-Tree index tree and VTC-RDB+ algorithm can effectively enhance the query and updating performance of the massive data in the distributed circumstance.

2007 ◽  
Vol 10-12 ◽  
pp. 578-582 ◽  
Author(s):  
Zhen Jiang Hu ◽  
Yong Da Yan ◽  
Tao Sun ◽  
Shen Dong ◽  
Z.Z. Zhao

The equations correlated the normal load and the tip penetration depth were derived through the theoretical analysis of the penetration process of the diamond tip. Verified by experiments, the equations can reflect the penetration process of the scratching machining system and provide theoretical basis for the optimization of depth control algorithm. The control of scratching depth realized in AFM deflection mode can effectively restrain the system drift during scratching process.


2011 ◽  
Vol 59 (4) ◽  
pp. 535-539
Author(s):  
S. Karyś

Three-phase soft-switching inverter with coupled inductors, experimental results This paper presents experimental results of the three-phase soft-switching inverter with coupled inductors that verify the control method influence on efficiency improvement. Different kinds of control methods were tested on the 6 kW experimental inverter. A short discussion on a few design methods of the resonant tank elements was made. Experimental results confirm that the advanced control algorithm and the proposed new design method of the resonant tank elements significantly increase the efficiency of this resonant inverter.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Junqiang Li ◽  
Lei Zhao ◽  
Tiejun Li

AbstractWalking assistance can be realized by active and passive robotic walkers when their users walk on even roads. However, fast signal processing and real-time control are necessary for active robotic walkers when the users walk on slopes, while assistive forces cannot be provided by passive robotic walkers when the users walk uphill. A robotic walker with an active-passive hybrid actuator (APHA) was developed in this study. The APHA, which consists of a rotary magnetorheological (MR) brake and a DC motor, can provide mobility assistance to users walking both uphill and downhill via the cooperative operation of the MR brake and DC motor. The rotary MR brake was designed with a T-shaped configuration, and the system was optimized to minimize the brake volume. Prototypes of the APHA and robotic walker were constructed. A control algorithm for the robotic walker was developed based on the characteristics of the APHA and the structure of the robotic walker. The mechanical properties of the APHA were characterized, and experiments were conducted to evaluate the mobility assistance supplied by the robotic walker on different roads. The results show that the APHA can meet the requirements of the robotic walker, and suitable assistive forces can be provided by the robotic walker, which has a simple mechanical structure and control method.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xinsheng Xu ◽  
Xiaoli Xu ◽  
Ying Liu ◽  
Kai Zhong ◽  
Haowei Zhang

Abstract Purpose The purpose of this paper is to design a prosthetic limb that is close to the motion characteristics of the normal human ankle joint. Methods In this study, combined with gait experiments, based on a dynamic ankle joint prosthesis, an active–passive hybrid-driven prosthesis was designed. On this basis, a real-time control algorithm based on the feedforward compensation angle outer loop is proposed. To test the effectiveness of the control method, a multi-body dynamic model and a controller model of the prosthesis were established, and a co-simulation study was carried out. Results A real-time control algorithm based on the feedforward compensation angle outer loop can effectively realize the gait angle curve measured in the gait test, and the error is less than the threshold. The co-simulation result and the test result have a high close rate, which reflects the real-time nature of the control algorithm. The use of parallel springs can improve the energy efficiency of the prosthetic system. Conclusions Based on the motion characteristics of human ankle joint prostheses, this research has completed an effective and feasible design of active and passive ankle joint prostheses. The use of control algorithms improves the controllability of the active and passive ankle joint prostheses.


2012 ◽  
Vol 580 ◽  
pp. 46-50
Author(s):  
Cheng Wu Lin ◽  
Jia Lin Shi ◽  
Bo Lu

In this paper, a voltage and frequency control model of double-fed motor excitation is put forward. This method has the ability to separate frequency and voltage adjustment of a general inverter by using USS communication protocol between the PLC and the general inverter. On this basis, the experimental system is constructed, and the related experiments are studied. Theoretical analysis and experimental results show that the proposed control method is feasible and has wide application prospects. It is very suitable for doubly-fed motors and other loads which need control of frequency and voltage.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2014 ◽  
Vol 685 ◽  
pp. 368-372 ◽  
Author(s):  
Hao Zhang ◽  
Ya Jie Zhang ◽  
Yan Gu Zhang

In this study, we presented a boiler combustion robust control method under load changes based on the least squares support vector machine, PID parameters are on-line adjusted and identified by LSSVM, optimum control output is obtained. The simulation result shows control performance of the intelligent control algorithm is superior to traditional control algorithm and fuzzy PID control algorithm, the study provides a new control method for strong non-linear boiler combustion control system.


2014 ◽  
Vol 989-994 ◽  
pp. 3105-3109
Author(s):  
Xiao Bo Liu ◽  
Xiao Feng Wei ◽  
Xiao Dong Yuan ◽  
Wei Ni

This paper deals with the design and theoretical analysis on a novel vertical lift machine which can vertically lift above 700 kg load up to 3.2 meters above the floor and located the load with high accuracy of position and orientation. Firstly the design model based on the installment demands of line-replaceable units (LRUs) is constructed. Then theoretical analysis including the number of degree of freedom of the lift machine, the inverse kinematic, the control principle, the lift platform pose error and the precise pose control method are conducted in the article. The validity of the design model and the effectiveness of the precise pose control system are confirmed by experiments using a prototype lift machine.


Sign in / Sign up

Export Citation Format

Share Document